

Dy-Mark Spray Lacquer All Std Colours Aerosol

Dy-Mark

Chemwatch: 22-3127 Version No: 13.1.1.1

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **01/11/2019** Print Date: **30/03/2020** S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Dy-Mark Spray Lacquer All Std Colours Aerosol
Synonyms	39023500, 39023501, 39023502, 39023503; 39023508, 39023511, 39023544, 39023565
Proper shipping name	AEROSOLS
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Application is by spray atomisation from a hand held aerosol pack
Relevant identified uses	Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	Dy-Mark
Address	89 Formation Street Wacol QLD 4076 Australia
Telephone	+61 7 3327 3004
Fax	+61 7 3327 3009
Website	http://www.dymark.com.au
Email	info@dymark.com.au

Emergency telephone number

Association / Organisation	Dy-Mark
Emergency telephone numbers	+61 7 3327 3099
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

		Min	Max	i
Flammability	4			1
Toxicity	2			0 = Minimum
Body Contact	2			1 = Low 2 = Moderate
Reactivity	1			3 = High
Chronic	2			4 = Extreme

Poisons Schedule	Not Applicable
Classification [1]	Flammable Aerosols Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Reproductive Toxicity Category 2, Specific target organ toxicity - repeated exposure Category 2, Aspiration Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Version No: 13.1.1.1 Dy-Mark Spray Lacquer All Std Colours Aerosol

Issue Date: **01/11/2019**Print Date: **30/03/2020**

Hazard pictogram(s)

SIGNAL WORD

DANGER

Hazard statement(s)

H222	Extremely flammable aerosol.
H302	Harmful if swallowed.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H361d	Suspected of damaging the unborn child.
H336	May cause drowsiness or dizziness.
H373	May cause damage to organs through prolonged or repeated exposure.
H304	May be fatal if swallowed and enters airways.
AUH044	Risk of explosion if heated under confinement.

Precautionary statement(s) Prevention

,	
Obtain special instructions before use.	
Keep away from heat/sparks/open flames/hot surfaces No smoking.	
Do not spray on an open flame or other ignition source.	
Pressurized container: Do not pierce or burn, even after use.	
Do not breathe mist/vapours/spray.	
Use only outdoors or in a well-ventilated area.	
Wear protective gloves/protective clothing/eye protection/face protection.	
Do not eat, drink or smoke when using this product.	

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P308+P313	IF exposed or concerned: Get medical advice/attention.
P321	Specific treatment (see advice on this label).
P331	Do NOT induce vomiting.
P362	Take off contaminated clothing and wash before reuse.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313	If eye irritation persists: Get medical advice/attention.
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P330	Rinse mouth.
P332+P313	If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
108-88-3	25-30	toluene
Not Available	5-15	pigments nonhazardous
Not Available	5-10	resins nonhazardous
Not Available	5-10	fillers nonhazardous
115-10-6	10-30	dimethyl ether

Dy-Mark Spray Lacquer All Std Colours Aerosol

Issue Date: 01/11/2019 Print Date: 30/03/2020

10-30 68476-85-7 hydrocarbon propellant

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Version No: 13.1.1.1

If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper **Eye Contact** and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). ▶ Remove any adhering solids with industrial skin cleansing cream. **Skin Contact** ► **DO NOT** use solvent · Seek medical attention in the event of irritation. If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lav patient down. Keep warm and rested. Inhalation Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ► Transport to hospital, or doctor. ► Avoid giving milk or oils Avoid giving alcohol Ingestion Not considered a normal route of entry. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of

Indication of any immediate medical attention and special treatment needed

Treat symptomatically. for lower alkyl ethers:

BASIC TREATMENT

Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- A low-stimulus environment must be maintained.
- Monitor and treat, where necessary, for shock
- Anticipate and treat, where necessary, for seizures
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension without signs of hypovolaemia may require vasopressors.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated
- Haemodialysis might be considered in patients with impaired renal function.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Following acute or short term repeated exposures to toluene:

- Toluene is absorbed across the alveolar barrier, the blood/air mixture being 11.2/15.6 (at 37 degrees C.) The concentration of toluene, in expired breath, is of the order of 18 ppm following sustained exposure to 100 ppm. The tissue/blood proportion is 1/3 except in adipose where the proportion is 8/10
- Metabolism by microsomal mono-oxygenation, results in the production of hippuric acid. This may be detected in the urine in amounts between 0.5 and 2.5 g/24 hr which represents, on average 0.8 gm/gm of creatinine. The biological half-life of hippuric acid is in the order of 1-2 hours.
- Primary threat to life from ingestion and/or inhalation is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (eg cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 <50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial damage has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenaline) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Index Sampling Time o-Cresol in urine 0.5 mg/L End of shift

Comments

Chemwatch: 22-3127 Page 4 of 13 Issue Date: 01/11/2019 Version No: 13.1.1.1 Print Date: 30/03/2020

Dy-Mark Spray Lacquer All Std Colours Aerosol

Prior to last shift of workweek

B, NS Hippuric acid in urine 1.6 g/g creatinine End of shift

NS: Non-specific determinant; also observed after exposure to other material

B: Background levels occur in specimens collected from subjects NOT exposed

0.05 mg/L

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

SMALL FIRE:

Toluene in blood

► Water spray, dry chemical or CO2

LARGE FIRE:

► Water spray or fog.

Special hazards arising from the substrate or mixture		
Fire Incompatibility	► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition with violent container rupture. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. 	
HAZCHEM	Not Applicable	

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

Chemwatch: 22-3127 Page 5 of 13

Dy-Mark Spray Lacquer All Std Colours Aerosol

Issue Date: **01/11/2019**Print Date: **30/03/2020**

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Version No: 13.1.1.1

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Safe handling

 Avoid smoking, naked lights or ignition sources.
 - Avoid contact with incompatible materials.
 - ► When handling, **DO NOT** eat, drink or smoke.
 - ► DO NOT incinerate or puncture aerosol cans.
 - ► DO NOT spray directly on humans, exposed food or food utensils.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - ▶ Work clothes should be laundered separately.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
 - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
 - F Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can
 - ▶ Store in original containers in approved flammable liquid storage area.
 - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped
 - No smoking, naked lights, heat or ignition sources.
 - ► Keep containers securely sealed. Contents under pressure.
 - Store away from incompatible materials.
 - ▶ Store in a cool, dry, well ventilated area.
 - ► Avoid storage at temperatures higher than 40 deg C.
 - Store in an upright position.
 - ▶ Protect containers against physical damage.
 - ► Check regularly for spills and leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- ► Aerosol dispenser.
- ► Check that containers are clearly labelled.

Storage incompatibility

► Avoid reaction with oxidising agents

- X Must not be stored together
- May be stored together with specific preventions
- + May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	toluene	Toluene	50 ppm / 191 mg/m3	574 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	dimethyl ether	Dimethyl ether	400 ppm / 760 mg/m3	950 mg/m3 / 500 ppm	Not Available	Not Available
Australia Exposure Standards	hydrocarbon propellant	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
toluene	Toluene	Not Available	Not Available	Not Available
dimethyl ether	Methyl ether; (Dimethyl ether)	3,000 ppm	3800* ppm	7200* ppm
hydrocarbon propellant	Liquified petroleum gas; (L.P.G.)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm

Ingredient	Original IDLH	Revised IDLH
toluene	500 ppm	Not Available
dimethyl ether	Not Available	Not Available
hydrocarbon propellant	2,000 ppm	Not Available

Dy-Mark Spray Lacquer All Std Colours Aerosol

Print Date: 30/03/2020

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- ► Safety glasses with side shields.
- Chemical goggles.
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
- Close fitting gas tight goggles

See Hand protection below

Hands/feet protection

- ▶ No special equipment needed when handling small quantities.
- ► OTHERWISE:
- ► For potentially moderate exposures:
 - ▶ Wear general protective gloves, eg. light weight rubber gloves.
 - ► For potentially heavy exposures:
 - ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection

Other protection

Skin protection

See Other protection below

No special equipment needed when handling small quantities. OTHERWISE:

Overalls.

- Skin cleansing cream.
- Evewash unit.
- Do not spray on hot surfaces.
- The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
- Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

BRETHERICK: Handbook of Reactive Chemical Hazards.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Dy-Mark Spray Lacquer All Std Colours Aerosol

Material	СРІ	
BUTYL	С	
CPE	С	
NEOPRENE	С	
NEOPRENE/NATURAL	С	

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	AX-AUS / Class 1	-	AX-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	AX-2	AX-PAPR-2

Version No: 13.1.1.1 Dy-Mark Spray Lacquer All Std Colours Aerosol

Page 7 of 13 Issue Date: 01/11/2019
Print Date: 30/03/2020

NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

up to 50 x ES	-	AX-3	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Coloured flammable liquid; not miscible with water. Supplied as an aerosol pack. Contents under PRESSURE . Contains highly flammable hydrocarbon propellant.			
Physical state	Liquid Relative density (Water = 1) Not Available			
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Available	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Available	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Chemwatch: 22-3127 Page 8 of 13 Issue Date: 01/11/2019 Version No: 13.1.1.1

Dy-Mark Spray Lacquer All Std Colours Aerosol

Print Date: 30/03/2020

There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of toxic gases may cause: ▶ Central Nervous System effects including depression, headache, confusion, dizziness, stupor, coma and seizures; respiratory: acute lung swellings, shortness of breath, wheezing, rapid breathing, other symptoms and respiratory arrest; heart: collapse, irregular heartbeats and cardiac arrest: • gastrointestinal: irritation, ulcers, nausea and vomiting (may be bloody), and abdominal pain. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Material is highly volatile and may guickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Ingestion Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed. Ingestion of alkyl ethers may produce stupor, blurred vision, headache, dizziness and irritation of the nose and throat. Respiratory distress and asphyxia may result The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Skin Contact Spray mist may produce discomfort Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system Open cuts, abraded or irritated skin should not be exposed to this material Not considered to be a risk because of the extreme volatility of the gas. Eye contact with alkyl ethers (vapour or liquid) may produce irritation, redness and tears Eye There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain. Harmful: danger of serious damage to health by prolonged exposure through inhalation. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects Chronic Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Main route of exposure to the gas in the workplace is by inhalation. TOXICITY IRRITATION Dv-Mark Spray Lacquer All **Std Colours Aerosol** Not Available Not Available TOXICITY IRRITATION Eye (rabbit): 2mg/24h - SEVERE dermal (rat) LD50: >2000 mg/kg[1] Eye (rabbit):0.87 mg - mild Inhalation (rat) LC50: 49 mg/l/4H[2] Oral (rat) LD50: 636 mg/kg[2] Eye (rabbit):100 mg/30sec - mild toluene Eye: adverse effect observed (irritating)[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating)[1] Skin: no adverse effect observed (not irritating) $^{[1]}$ TOXICITY IRRITATION dimethyl ether Not Available Inhalation (rat) LC50: 309 mg/l/4H[2] TOXICITY IRRITATION hydrocarbon propellant Not Available Not Available Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Dy-Mark Spray Lacquer All Std Colours Aerosol

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

Chemwatch: 22-3127 Page 9 of 13

Version No: 13.1.1.1

Dy-Mark Spray Lacquer All Std Colours Aerosol

Issue Date: **01/11/2019**Print Date: **30/03/2020**

Dy-Mark Spray Lacquer All Std Colours Aerosol & HYDROCARBON PROPELLANT

Dy-Mark Spray Lacquer All

Std Colours Aerosol &

TOLUENE

No significant acute toxicological data identified in literature search, inhalation of the gas

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

For toluene:

Acute toxicity: Humans exposed to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis (sleepiness) and death. When inhaled or swallowed, toluene can cause severe central nervous system depression, and in large doses has a narcotic effect. 60mL has caused death. Death of heart muscle fibres, liver swelling, congestion and bleeding of the lungs and kidney injury were all found on autopsy.

Exposure to inhalation at a concentration of 600 parts per million for 8 hours resulted in the same and more serious symptoms including euphoria (a feeling of well-being), dilated pupils, convulsions and nausea. Exposure to 10000-30000 parts per million (1-3%) has been reported to cause narcosis and death. Toluene can also strip the skin of lipids, causing skin inflammation.

Subchronic/chronic effects: Repeat doses of toluene cause adverse central nervous system effects and can damage the upper airway, the liver and the kidney. Adverse effects occur from both swallowing and inhalation. In humans, a reported lowest level causing adverse effects on the nervous system is 88 parts per million. In one case, toluene caused heart sensitization and death. In several cases of "glue sniffing", damage to the cerebellum was noted. Workers chronically exposed to toluene fumes have reported reduced white cell counts.

Developmental/Reproductive toxicity: Exposure to high levels of toluene can result in adverse effects in the developing foetus. Several studies have indicated that high levels of toluene can also adversely affect the developing offspring in laboratory animals. In children who were exposed to toluene before birth, as a result of solvent abuse by the mother, variable growth, a small head, central nervous system dysfunction, attention deficits, minor facial and limb abnormalities, and developmental delay were seen.

Absorption: Studies in humans and animals have shown that toluene is easily absorbed through the lungs and gastrointestinal tract, with much less being absorbed through the skin.

Distribution: Animal studies show that toluene may be distributed in the body fat, bone marrow, spinal nerves, spinal cord and brain white matter, with lower levels in the blood, kidney and liver. Toluene has generally been found to accumulate in fatty tissue, and in highly vascularised tissues. Metabolism: Inhaled or ingested toluene may be metabolized to benzyl alcohol, after which it is further oxidized to benzaldehyde and benzoic acid. Benzoic acid is sometimes conjugated with glycine to form hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. O-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites.

Excretion: Toluene is mainly (60-70%) excreted through the urine as hippuric acid. Benzoyl glucuronide accounts for 10-20% of excretion, and unchanged toluene through exhaled air also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours of exposure.

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	✓

Legend:

🗶 – Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Dy-Mark Spray Lacquer All Std Colours Aerosol	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	0.0073mg/L	4
Anluana	EC50	48	Crustacea	3.78mg/L	5
toluene	EC50	72	Algae or other aquatic plants	12.5mg/L	4
	BCF	24	Algae or other aquatic plants	10mg/L	4
	NOEC	168	Crustacea	0.74mg/L	5
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	Fish 1-783.04mg/L	
dimethyl ether	EC50	48	Crustacea	>4400.0mg/L	2
	EC50	96	Algae or other aquatic plants	154.917mg/L	2
	NOEC	48	Crustacea	>4000mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	24.11mg/L	2
hydrocarbon propellant	EC50	96	Algae or other aquatic plants	Algae or other aquatic plants 7.71mg/L	
	LC50	96	Fish	Fish 24.11mg/L	
	EC50	96	Algae or other aquatic plants	7.71mg/L	2
Legend:	V3.12 (QSAR) -	- Aquatic Toxicity Data (Estimated) 4. U	HA Registered Substances - Ecotoxicological Inform IS EPA, Ecotox database - Aquatic Toxicity Data 5 ((Japan) - Bioconcentration Data 8. Vendor Data		

Harmful to aquatic organisms.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Chemwatch: 22-3127 Page 10 of 13 Issue Date: 01/11/2019
Version No: 13.1.1.1 Print Date: 30/03/2020

Dy-Mark Spray Lacquer All Std Colours Aerosol

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes >naphthalenes. Anthroene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For Petroleum Hydrocarbon Gases:

Environmental Fate: Petroleum hydrocarbon gases are primarily produced in petroleum refineries, or in gas plants that separate natural gas and natural gas liquids. This category contains 99 petroleum hydrocarbon gas substances, the majority of which never reach the consumer. Petroleum hydrocarbon gases do not contain inorganic compounds, (e.g. hydrogen sulfide, ammonia, and carbon monoxide), other than asphyxiant gases; the low molecular weight hydrocarbon molecules are primarily responsible for the hazard associated with these gases.

Atmospheric Fate: All components of these gases will evaporate to the air where interaction with hydroxyl radicals is an important fate process. Substances in refinery gases that evaporate to air may undergo indirect, gas-phase oxidation reaction with hydroxyl radicals and this is an important fate process for these substances. Half-lives for refinery gases range from 960 days, (methane), to 0.16 days, (butadiene). The constituents of the C5- C6 hydrocarbon gases have light breakdown half-lives of approximately two days. The inorganic gases are chemically stable and may be lost to the atmosphere or simply become involved in the environmental recycling of their atoms.

Terrestrial Fate: Biological breakdown of these organisms is not expected to be an important fate process since they tend to evaporate to the air, however; some of the higher weight components may become available for microbial attack. Naphtha gases are also considered to be inherently biodegradable.

Aquatic Fate: The solubilities of these substances in water vary, ranging from approximately 22 parts per million to several hundred parts per million. Some of these gasses have substantial water solubility, but they will eventually evaporate to the atmosphere. Refinery gases are not broken down by water but, they will be broken down by microbes. Gaseous hydrocarbons are widespread in nature and numerous types of microbes have evolved which are capable of oxidizing these substances as their sole energy source.

Ecotoxicity: These substances vary in their toxicities to aquatic organisms from slightly toxic to moderately toxic. They are not expected to persist long enough in the environment to elicit toxicity. Emissions of petroleum hydrocarbon gases to the atmosphere would not likely result in acutely toxic concentrations in adjacent water bodies because such emissions will tend to remain in the atmosphere. Several of the constituents in refinery gases were shown to be highly hazardous to aquatic organisms in laboratory toxicity tests where exposure concentrations can be maintained over time. Hydrogen sulfide was shown to be the most toxic constituent to fish, and invertebrates.

Most ethers are very resistant to hydrolysis, and the rate of cleavage of the carbon-oxygen bond by abiotic processes is expected to be insignificant.

Direct photolysis will not be an important removal process since aliphatic ethers do not absorb light at wavelengths >290 nm

For Isobutene (Refrigerant Gas): Koc: 35, (estimated); Henry & Law Constant: 4.08 atm-cu m/mole; Vapor Pressure: 2611 mm Hg @ 25 deg C; BCF: 74, (estimated). Atmospheric Fate: Isobutane is a gas at ordinary temperatures. The substance is highly flammable and explosive. It is degraded in the atmosphere by reactions with hydroxyl radicals; the half-life for this reaction in air is 6.9 days. The loss of these substances via wet/dry deposition is thought to be of minor importance. It is thought that the substance will evaporate upon leaving the atmosphere in precipitation then reemitted to the atmosphere after deposition to the land. Isobutane is a contributor to the production of PAN, (peroxyacyl nitrates), under photochemical smog conditions.

Terrestrial Fate: Isobutane will have very high mobility in soil and low adsorption potential. Evaporation from dry/moist soil surfaces is an important fate process for this substance. Isobutane is biodegradable, especially under acclimated conditions, and may biodegrade in soil. The substance is not expected to contaminate the soil.

Aquatic Fate: Isobutane is not expected to not adsorb to sediment/particulate matter in the water column. Isobutane will readily evaporate from water with an estimated half-life of 2.2 hours, for a model river and 3.0 days. If the gas is introduced to water, it will float and boil, producing a flammable, and visible, vapor cloud. Isobutane will not concentrate in aquatic organisms and will be broken down by microorganisms in water, however; the substance will not contaminate the water.

Ecotoxicity: Isobutane has slight acute toxicity to aquatic life. Short-term effects include death of animals, fish, and birds and low growth rate in plants. Long term, (chronic), effects include shortened life-spans, reproductive problems, lowered fertility, and appearance/behavioral changes in animals.

For Propane: Koc 460. log

Kow 2.36

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. For Toluene:

log Kow : 2.1-3; log Koc : 1.12-2.85; Koc : 37-260; log Kom : 1.39-2.89; Half-life (hr) air : 2.4-104;

Half-life (hr) H2O surface water: 5.55-528; Half-life (hr) H2O ground: 168-2628; Half-life (hr) soil: <48-240; Henry's Pa m3 /mol: 518-694;

Henry's Pa m3 /mol : 518-694; Henry's atm m3 /mol : 5.94;

E-03BOD 5 0.86-2.12, 5%COD - 0.7-2.52,21-27%;

ThOD - 3.13; BCF - 1.67-380;

log BCF - 0.22-3.28.

Atmospheric Fate: The majority of toluene evaporates to the atmosphere from the water and soil. The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidized by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene.

Terrestrial Fate: Toluene is moderately retarded by adsorption to soils rich in organic material, therefore, transport to ground water is dependent on soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilized, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. In surface soil, volatilization to air is an important fate process for toluene. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Aquatic Fate: An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilization of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water (at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal. Ecotoxicity: Bioaccumulation in the food chain is predicted to be low. Toluene has moderate acute toxicity to aquatic organisms. Toluene is, on the average, slightly toxic to fathead minnow, guppies and goldfish and not acutely toxic to bluegill or channel cattles and crab. Toluene, on the average, is slightly toxic to crustaceans specifically, shrimp species including grass shrimp and daggerblade grass shrimp. Toluene has a negative effect on green algae during their growth phase.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)
dimethyl ether	LOW	LOW

Chemwatch: **22-3127**Version No: **13.1.1.1**

Dy-Mark Spray Lacquer All Std Colours Aerosol

Issue Date: **01/11/2019**Print Date: **30/03/2020**

Bioaccumulative potential

Ingredient	Bioaccumulation	
toluene	LOW (BCF = 90)	
dimethyl ether	LOW (LogKOW = 0.1)	

Mobility in soil

Ingredient	Mobility	
toluene	LOW (KOC = 268)	
dimethyl ether	HIGH (KOC = 1.292)	

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 Where in doubt contact the responsible authority.
- ► Consult State Land Waste Management Authority for disposal.
- ► Discharge contents of damaged aerosol cans at an approved site.
- Allow small quantities to evaporate.
- ► DO NOT incinerate or puncture aerosol cans.
- ► Bury residues and emptied aerosol cans at an approved site.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Land transport (ADG)

UN number	1950
UN proper shipping name	AEROSOLS
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable
Packing group	Not Applicable
Environmental hazard	Not Applicable
Special precautions for user	Special provisions 63 190 277 327 344 381

Air transport (ICAO-IATA / DGR)

UN number	1950			
UN proper shipping name	Aerosols, flammable			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L		
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	Cargo Only Maximum Passenger and Cargo Passenger and Cargo Passenger and Cargo	· ·		

Chemwatch: **22-3127**Version No: **13.1.1.1**

Dy-Mark Spray Lacquer All Std Colours Aerosol

Issue Date: **01/11/2019**Print Date: **30/03/2020**

Sea transport (IMDG-Code / GGVSee)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-D , S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000 ml		

Monographs

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Schedule 5

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

TOLUENE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
Chemical Footprint Project - Chemicals of High Concern List
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

DIMETHYL ETHER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$

HYDROCARBON PROPELLANT IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 $\,$

Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (toluene; dimethyl ether; hydrocarbon propellant)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	01/11/2019
Initial Date	02/10/2009

SDS Version Summary

Version	Issue Date	Sections Updated
10.1.1.1	20/10/2016	Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Chronic Health, Classification, Environmental, Exposure Standard, Fire Fighter (fire/explosion hazard), Handling Procedure, Ingredients, Personal Protection (Respirator), Personal Protection (eye), Physical Properties, Spills (major), Supplier Information, Toxicity and Irritation (Other), Name
13.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Chemwatch: 22-3127 Page 13 of 13 Issue Date: 01/11/2019 Version No: 13.1.1.1

Dy-Mark Spray Lacquer All Std Colours Aerosol

Print Date: 30/03/2020

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.