Maruzen No.4 Wonder Marker Dy-Mark Chemwatch: 7135-24 Version No: 8.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### Chemwatch Hazard Alert Code: 3 Issue Date: **06/12/2022** Print Date: **06/12/2022** S.GHS.AUS.EN.E ### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | Maruzen No.4 Wonder Marker | | |-------------------------------|--|--| | Chemical Name | Chemical Name Not Applicable | | | Synonyms | nyms 12704001; 12704002; 12704003 | | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) (contains xylene) | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Solvent based marking pen. | |--------------------------|----------------------------| |--------------------------|----------------------------| ### Details of the manufacturer or supplier of the safety data sheet | Registered company name | Dy-Mark | | |-------------------------|--|--| | Address | 89 Formation Street Wacol QLD 4076 Australia | | | Telephone | +61 7 3327 3004 | | | Fax | +61 7 3327 3009 | | | Website | http://www.dymark.com.au | | | Email | info@dymark.com.au | | ### Emergency telephone number | Association / Organisation | Dy-Mark | |-----------------------------------|-----------------| | Emergency telephone numbers | +61 7 3327 3099 | | Other emergency telephone numbers | Not Available | ### **SECTION 2 Hazards identification** ### Classification of the substance or mixture ### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ### Chemwatch Hazard Ratings | Poisons Schedule | Not Applicable | |-------------------------------|--| | Classification ^[1] | Flammable Liquids Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 1, Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Acute Hazard Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | #### Label elements Issue Date: 06/12/2022 Print Date: 06/12/2022 ### Hazard pictogram(s) Signal word ### Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|------------------------------------| | H302 | Harmful if swallowed. | | H312 | Harmful in contact with skin. | | H315 | Causes skin irritation. | | H318 | Causes serious eye damage. | | H332 | Harmful if inhaled. | | H335 | May cause respiratory irritation. | | H336 | May cause drowsiness or dizziness. | | H402 | Harmful to aquatic life. | ### Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | |------|--|--| | P271 | Use only outdoors or in a well-ventilated area. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P240 | Ground and bond container and receiving equipment. | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | P242 | Use non-sparking tools. | | | P243 | Take action to prevent static discharges. | | | P261 | Avoid breathing mist/vapours/spray. | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | P270 | Do not eat, drink or smoke when using this product. | | | P273 | Avoid release to the environment. | | | | | | ### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|--|--| | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | P330 | Rinse mouth. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | ### Precautionary statement(s) Storage | , | | | |-----------|--|--| | P403+P235 | Store in a well-ventilated place. Keep cool. | | | P405 | Store locked up. | | ### Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ### **SECTION 3 Composition / information on ingredients** #### **Substances** See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |---------------|---|--| | 1330-20-7 | 30-60 | xylene | | 71-36-3 | 10-30 | n-butanol | | Not Available | balance | Ingredients determined not to be hazardous | | Legend: | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | Chemwatch: **7135-24**Version No: **8.1** # Page 3 of 13 Maruzen No.4 Wonder Marker Issue Date: **06/12/2022**Print Date: **06/12/2022** #### **SECTION 4 First aid measures** | Description of first aid measures | | | |-----------------------------------|---|--| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. | | #### Indication of any immediate medical attention and special treatment needed Avoid giving alcohol. Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should
be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. To treat poisoning by the higher aliphatic alcohols (up to C7): - Gastric lavage with copious amounts of water. - It may be beneficial to instill 60 ml of mineral oil into the stomach. - Oxygen and artificial respiration as needed. - Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens. - ► To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose. - ▶ Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5) #### BASIC TREATMENT - ▶ Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - ▶ Monitor and treat, where necessary, for shock - Monitor and treat, where necessary, for pulmonary oedema. - ▶ Anticipate and treat, where necessary, for seizures - ▶ DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. - Give activated charcoal. #### ADVANCED TREATMENT - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - ▶ Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications - Drug therapy should be considered for pulmonary oedema. - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. #### EMERGENCY DEPARTMENT - Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome. - Acidosis may respond to hyperventilation and bicarbonate therapy. - ▶ Haemodialysis might be considered in patients with severe intoxication. - Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 For C8 alcohols and above Symptomatic and supportive therapy is advised in managing patients. For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - ▶ Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patient's should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate ### Page 4 of 13 Issue Date: 06/12/2022 Print Date: 06/12/2022 Maruzen No.4 Wonder Marker tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min Sampling Time End of shift Last 4 hrs of shift Comments ### **SECTION 5 Firefighting measures** ### Extinguishing media - Alcohol stable foam. - Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. Advice for firefighters Water spray or fog - Large fires only. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |----------------------|--| |----------------------|--| | Advice for filerighters | | | | | |-------------------------|---|--|--|--| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | | | | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. | | | | #### **SECTION 6 Accidental release measures** HAZCHEM ### Personal precautions, protective equipment and emergency procedures •3Y See section 8 ### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of
drains or waterways occurs, advise emergency services. | Issue Date: **06/12/2022**Print Date: **06/12/2022** #### **SECTION 7 Handling and storage** #### Precautions for safe handling - ▶ DO NOT allow clothing wet with material to stay in contact with skin - ► Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. Safe handling - Store in original containers.Keep containers securely sealed. - No smoking, naked lights or ignition sources. - Other information Store in a cool. - Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ### Conditions for safe storage, including any incompatibilities #### Suitable container - ▶ Metal can or drum - Packaging as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. #### Storage incompatibility Avoid reaction with oxidising agents - X Must not be stored together - May be stored together with specific preventions - + May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. ### **SECTION 8 Exposure controls / personal protection** #### **Control parameters** ### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------|-----------------------------|--------------------|---------------------|--------------------|---------------| | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 80 ppm / 350 mg/m3 | 655 mg/m3 / 150 ppm | Not Available | Not Available | | Australia Exposure Standards | n-butanol | n-Butyl alcohol | Not Available | Not Available | 50 ppm / 152 mg/m3 | Not Available | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |------------|---------------|---------------|---------------| | xylene | Not Available | Not Available | Not Available | | n-butanol | 60 ppm | 800 ppm | 8000** ppm | | Ingredient | Original IDLH | Revised IDLH | |------------|---------------|---------------| | xylene | 900 ppm | Not Available | | n-butanol | 1,400 ppm | Not Available | #### **Exposure controls** CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: ### Appropriate engineering Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of ## controls Chemwatch: 7135-24 Version No: 8.1 ### Page 6 of 13 Maruzen No.4 Wonder Marker Issue Date: 06/12/2022 Print Date: 06/12/2022 overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalentl Hands/feet protection Skin protection Eve and face protection ### See Hand protection below - Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is
expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - \cdot Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended #### Maruzen No.4 Wonder Marker Issue Date: **06/12/2022**Print Date: **06/12/2022** Body protection See Other protection below P.V.C apron. Parrier cream. Skin cleansing cream. Eye wash unit. ### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-qenerated* selection: Maruzen No.4 Wonder Marker | Material | СРІ | |-------------------|-----| | PE/EVAL/PE | A | | PVA | A | | TEFLON | A | | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PVC | С | | PVDC/PE/PVDC | С | | VITON | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | A-AUS / Class 1 | - | A-PAPR-AUS /
Class 1 | | up to 50 x ES | Air-line* | - | - | | up to 100 x ES | - | A-3 | - | | 100+ x ES | - | Air-line** | - | * - Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Appearance Black, red, blue coloured liquids with a solvent xylene odour; not miscible with water. | | | | |--|--|---|----------------|--| | Physical state | Liquid | Relative density (Water = 1) | 1.0 | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | | Initial boiling point and boiling range (°C) | 140 | Molecular weight (g/mol) | Not Applicable | | | Flash point (°C) | Not Available | Taste | Not Available | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | Flammability | Not Available | Oxidising properties | Not Available | | | Upper Explosive Limit (%) | 7.0 | Surface Tension (dyn/cm or mN/m) | Not Available | | | Lower Explosive Limit (%) | 1.0 | Volatile Component (%vol) | Not Available | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | | Vapour density (Air = 1) | >1 | VOC g/L | 698.4 | | Maruzen No.4 Wonder Marker Issue Date: **06/12/2022** Print Date: **06/12/2022** ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** | Information | on | toxicological | effects | |-------------|----|---------------|---------| |-------------|----|---------------|---------| | illiorillation on toxicological el | necis | |------------------------------------|--| | Inhaled | The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of
normal handling, may be harmful. | | Ingestion | Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed. | | Skin Contact | Skin contact with the material may be harmful; systemic effects may result following absorption. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material | | Eye | If applied to the eyes, this material causes severe eye damage. | | Chronic | Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS] | | Maruzen No.4 Wonder Marker | TOXICITY | IRRITATION | |----------------------------|--|---| | | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | | Inhalation(Rat) LC50: 5000 ppm4h ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | xylene | Oral (Mouse) LD50; 2119 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit):500 mg/24h moderate | | | | Skin: adverse effect observed (irritating) ^[1] | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 3400 mg/kg ^[2] | Eye (human): 50 ppm - irritant | | | Inhalation(Rat) LC50: 8000 ppm4h ^[2] | Eye (rabbit): 1.6 mg-SEVERE | | n-butanol | Oral (Rat) LD50; 790 mg/kg ^[2] | Eye (rabbit): 24 mg/24h-SEVERE | | | | Eye: adverse effect observed (irreversible damage) ^[1] | | | | Skin (rabbit): 405 mg/24h-moderate | | | | Skin: adverse effect observed (irritating) ^[1] | | Legend: | Value obtained from Europe ECHA Registered Substates specified data extracted from RTECS - Register of Toxic controls. | nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless | | XYLENE | Reproductive effector in rats The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | |--------|---| |--------|---| ## Page 9 of 13 Issue Date: 06/12/2022 Print Date: 06/12/2022 #### Maruzen No.4 Wonder Marker ## N-BUTANOL #### For n-butanol: Acute toxicity: In animal testing, n-butanol (BA) was only slightly toxic, following exposure by swallowing, skin contact or irritation. Animal testing and human experience suggest that n-butanol is moderately irritating to the skin but severely irritating to the eye. Human studies show that BA is not likely to cause skin sensitization. Warning of exposure occurs before irritation of the nose, because n-butanol has an odour which can be detected below concentration levels cause irritation. Repeat dose toxicity: Animal testing showed temporarily reduction in activity and food intake following repeated exposure to BA, but otherwise there was no evidence of chronic toxicity. Reproductive toxicity: Several animal studies indicate BA does not possess reproductive toxicity, and does not affect fertility. Developmental toxicity: BA only caused developmental changes and toxic effects on the foetus near or at levels that were toxic to the mother. Genetic toxicity: Testing shows that BA does not possess genetic toxicity. Cancer-causing potential: Based on negative results from testing for potential of n-butanol to cause mutations and chromosomal aberrations, BA has a very small potential for causing cancer. #### Maruzen No.4 Wonder Marker & N-BUTANOL Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. #### Maruzen No.4 Wonder Marker & XYLENE & N-BUTANOL The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | Acute Toxicity | ✓ | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: — Data either not available or does not fill the criteria for classification - Data available to make classification ### **SECTION 12 Ecological information** #### **Toxicity** | Maruzen No.4 Wonder Marker | Endpoint | Test Duration (hr) | Species | Value | Source | |----------------------------|------------------|--------------------|---|--|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 4.6mg/l | 2 | | xylene | EC50 | 48h | Crustacea | 1.8mg/l | 2 | | | NOEC(ECx) | 73h | Algae or other aquatic plants | Algae or other aquatic plants 0.44mg/l | | | | LC50 | 96h | Fish | 2.6mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 504h | Crustacea | 4.1mg/l | 2 | | | EC50 | 72h | Algae or other aquatic plants | >500mg/l | 1 | | n-butanol | EC50 | 48h | Crustacea | >500mg/l | 1 | | | LC50 | 96h | Fish | 100-500mg/l | 4 | | | EC50 | 96h | Algae or other aquatic plants | 225mg/l | 2 | | Legend: | | | Registered Substances - Ecotoxicological Informa
atic Hazard Assessment Data 6. NITE (Japan) - I | | | Harmful to aquatic organisms. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > nethylnaphthalenes nethyln sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. for n-butanol (syn: BA) log Kow : 0.88 Koc: 71.6 Half-life (hr) air : 5-52 Half-life (hr) H2O surface water : 2.4-3022 Henry's atm m3 /mol: 5.57E-06 BOD 5: 1.1-2.04.33% COD: 1.9,92% ThOD: 2.594 Continued... # Page 10 of 13 Maruzen No.4 Wonder Marker Issue Date: **06/12/2022**Print Date: **06/12/2022** #### **Environmental fate:** BA s vapor pressure is 0.56 kPa at 200 C, water solubility is 77 g/L at 200 C and a Log Kow is 0.88. Based on level III
fugacity modeling, BA will partition 83.5% in air, 5.9% in soil, 10.6% in water, <0.1% in suspended solids, and <0.1% in biota and in sediment. BA degrades in air by reaction with hydroxyl radicals, having a half-life in air of 1.2 to 2.3 days. The volatilisation half-life for BA in water is estimated to be 2.4 hours for streams, 3.9 hours for rivers and 126 days for lakes. BA is classified as "readily biodegradable" under aerobic conditions. The octanol:water partitioning coefficient (log Kow) for BA ranges from 0.88 to 0.97, and the calculated bioconcentration factor (BCF) is 3. These data indicate that BA has a low potential to bioaccumulate. BA is expected to migrate readily through soil to groundwater and not to sorb to soil particles. #### Ecotoxicity: BA exhibits low toxicity to fish, amphibians and aquatic invertebrates, plants, algae, bacteria and protozoans. However, some algal species are sensitive to BA. Acute toxicity to aquatic life may occur at concentrations greater than 500 mg/l. #### For Xylenes: $log\ Koc: 2.05-3.08;\ Koc: 25.4-204;\ Half-life\ (hr)\ air: 0.24-42;\ Half-life\ (hr)\ H2O\ surface\ water: 24-672;\ Half-life\ (hr)\ H2O\ ground: 336-8640;\ Half-life\ (hr)\ soil: 52-672;\ Henry's\ Pa\ m3\ /mol: 637-879;\ Henry's\ atm\ m3\ /mol - 7.68E-03;\ BOD\ 5\ if\ unstated: -1.4,1%;\ COD\ -2.56,13\%\ ThOD\ -3.125:\ BCF: 23;\ log\ BCF: 1.17-2.41.$ Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylphenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, and 4-nitro-2,6-dimethylphenol Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |------------|-----------------------------|-----------------------------|--| | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | | n-butanol | LOW (Half-life = 54 days) | LOW (Half-life = 3.65 days) | | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|--------------------| | xylene | MEDIUM (BCF = 740) | | n-butanol | LOW (BCF = 0.64) | #### Mobility in soil | Ingredient | Mobility | |------------|----------------------| | n-butanol | MEDIUM (KOC = 2.443) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - A Hierarchy of Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site - ▶ Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 Transport information** #### Labels Required Issue Date: **06/12/2022**Print Date: **06/12/2022** | Marine Pollutant | N | |------------------|-----| | HAZCHEM | •3` | ### Land transport (ADG) | UN number | 1263 | | | |------------------------------|--|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) (contains xylene) | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions 163 223 367 Limited quantity 5 L | | | ### Air transport (ICAO-IATA / DGR) | UN number | 1263 | | | | |------------------------------|---|---|--------------------------------|-----------------------------------| | UN proper shipping name | Paint (including paint, la | cquer, enamel, stain, shellac, varnish, p | olish, liquid filler and liqui | d lacquer base) (contains xylene) | | | ICAO/IATA Class | 3 | | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 3L | | | | Packing group | III | | | | | Environmental hazard | Not Applicable | | | | | | Special provisions | | A3 A72 A192 | | | | Cargo Only Packing Instructions | | 366 | | | | Cargo Only Maximum Qty / Pack | | 220 L | | | Special precautions for user | Passenger and Cargo Packing Instructions | | 355 | | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 10 L | | ### Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | | |------------------------------|--|------------------------------------|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) (contains xylene) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk No | ot Applicable | | | Packing group | Ш | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-E, S-E
163 223 367 955
5 L | | ### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | | |--------------|---------------|--| | xylene | Not Available | | | n-butanol | Not Available | | ### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------|---------------| | xylene | Not Available | #### Maruzen No.4 Wonder Marker Issue Date:
06/12/2022Print Date: **06/12/2022** | Product name | Ship Type | |--------------|---------------| | n-butanol | Not Available | | | | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### xylene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ### n-butanol is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$ Australian Inventory of Industrial Chemicals (AIIC) ### **National Inventory Status** | National Inventory | Status | | | |--|--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | Canada - DSL | Yes | | | | Canada - NDSL | No (xylene; n-butanol) | | | | China - IECSC | Yes | | | | Europe - EINEC / ELINCS / NLP | Yes | | | | Japan - ENCS | Yes | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | Yes | | | | Philippines - PICCS | Yes | | | | USA - TSCA | Yes | | | | Taiwan - TCSI | Yes | | | | Mexico - INSQ | Yes | | | | Vietnam - NCI | Yes | | | | Russia - FBEPH | Yes | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | | ### **SECTION 16 Other information** | Revision Date | 06/12/2022 | | |---------------|------------|--| | Initial Date | 24/08/2005 | | #### SDS Version Summary | Version | Date of Update | Sections Updated | |---------|----------------|--| | 7.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | 8.1 | 06/12/2022 | Synonyms, Transport Information | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Chemwatch: 7135-24 Page 13 of 13 Issue Date: 06/12/2022 Version No: 8.1 Print Date: 06/12/2022 ### Maruzen No.4 Wonder Marker AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances ### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.