AutoTech Epoxy Floor Coating Part A - All Colours AutoTech Chemwatch: 5471-18 Version No: 3.1 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **28/02/2024**Print Date: **07/10/2024**S.GHS.AUS.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | |-------------------------------|--| | Product name | AutoTech Epoxy Floor Coating Part A - All Colours | | Chemical Name | Not Applicable | | Synonyms | 41090413; 41090416; 41090402; | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Use according to manufacturer's directions. | |--------------------------|---| |--------------------------|---| #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | Dy-Mark | |-------------------------|--| | Address | 89 Formation Street Wacol QLD 4076 Australia | | Telephone | +61 7 3327 3004 | | Fax | +61 7 3327 3009 | | Website | https://www.dymark.com.au | | Email | info@dymark.com.au | #### Emergency telephone number | Association / Organisation | Dy-Mark | |-----------------------------------|-----------------| | Emergency telephone numbers | +61 7 3327 3099 | | Other emergency telephone numbers | Not Available | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture #### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. #### Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 2 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 3 | | 1 = Low | | Reactivity | 2 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | S5 | |-------------------------------|---| | Classification ^[1] | Flammable Liquids Category 3, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | #### Label elements Hazard pictogram(s) Signal word Dange Chemwatch: **5471-18** Page **2** of **17** AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** #### Hazard statement(s) Version No: 3.1 | AUH019 | May form explosive peroxides. | |--------|--| | H411 | Toxic to aquatic life with long lasting effects. | | H318 | Causes serious eye damage. | | H317 | May cause an allergic skin reaction. | | H315 | Causes skin irritation. | | H226 | Flammable liquid and vapour. | #### Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |------|--| | P233 | Keep container tightly closed. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P240 | Ground and bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use non-sparking tools. | | P243 | Take action to prevent static discharges. | | P261 | Avoid breathing mist/vapours/spray. | | P273 | Avoid release to the environment. | | P264 | Wash all exposed external body areas thoroughly after handling. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | P391 | Collect spillage. | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | #### Precautionary statement(s) Storage P403+P235 Store in a well-ventilated place. Keep cool. #### Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** P501 #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|---|--| | 25068-38-6 | 10-30 | bisphenol A/ diglycidyl ether resin, liquid | | 1330-20-7 | 5-10 | <u>xylene</u> | | 78-83-1 | 1-5 | <u>isobutanol</u> | | 1675-54-3 | 2-3 | bisphenol A diglycidyl ether | | 68609-97-2 | 1-2 | (C12-14)alkylglycidyl ether | | 100-51-6 | <1 | benzyl alcohol | | Not Available | balance | Ingredients determined not to be hazardous | | Legend: | Classified by Chemwatch; 2. (Classification drawn from C&L * | Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. | #### **SECTION 4 First aid measures** #### Description of first aid measures If this product comes in contact with the eyes: #### Eye Contact - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - ► Transport to hospital or doctor without delay. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### Skin Contact If skin contact occurs: - ▶ Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). Chemwatch: 5471-18 Page 3 of 17 Issue Date: 28/02/2024 Version No: 3.1 Print Date: 07/10/2024 #### AutoTech Epoxy Floor Coating Part A - All Colours | | ▶ Seek medical attention in event of irritation. | |------------|--| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory
distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift #### **SECTION 5 Firefighting measures** #### **Extinguishing media** - Foam - Dry chemical powder. Methylhippu-ric acids in urine - BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |-------------------------|--| | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) | #### **SECTION 6 Accidental release measures** **HAZCHEM** ## Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Minor Spills - ▶ Remove all ignition sources - Clean up all spills immediately. other pyrolysis products typical of burning organic material Comments Chemwatch: 5471-18 Page 4 of 17 Issue Date: 28/02/2024 Version No. 3.1 Print Date: 07/10/2024 AutoTech Epoxy Floor Coating Part A - All Colours - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Contain and absorb small quantities with vermiculite or other absorbent material. - Wipe up. - Collect residues in a flammable waste container. - In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground - If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and - For small spills, reactive diluents should be absorbed with sand. #### Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - No smoking, naked lights or ignition sources - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse /absorb vapour. - Contain spill with sand, earth or vermiculite. - Use only spark-free shovels and explosion proof equipment. - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - ▶ Collect solid residues and seal in labelled drums for disposal - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. Personal Protective Equipment advice is contained in Section 8 of the SDS #### **SECTION 7 Handling and storage** **Major Spills** #### Precautions for safe handling - Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec) - · Avoid splash filling. - Do NOT use compressed air for filling discharging or handling operations. - Wait 2 minutes after tank filling (for tanks such as those on - road tanker vehicles) before opening hatches or manholes. - · Wait 30 minutes after tank filling (for large storage tanks) - · before opening hatches or manholes. Even with proper grounding and bonding, this material can still accumulate an - electrostatic charge. If sufficient charge is allowed to - accumulate, electrostatic discharge and ignition of flammable - air-vapour mixtures can occur. Be aware of handling - operations that may give rise to additional hazards that result from the accumulation of static charges. These include but are - not limited to pumping (especially turbulent flow), mixing, - filtering, splash filling, cleaning and filling of tanks and - containers, sampling, switch loading, gauging, vacuum truck - operations, and mechanical movements. These activities may - lead to static discharge e.g. spark formation. Restrict line velocity during pumping in order to avoid generation of - electrostatic discharge (= 1 m/s until fill pipe submerged to twice its diameter, then = 7 m/s). Avoid splash filling. - Do NOT use compressed air for filling, discharging, or handling operations - Avoid all personal contact, including inhalation. Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets Earth all lines and equipment. - Use spark-free tools when handling. - Avoid contact with incompatible materials - When handling, DO NOT eat, drink or smoke Keep containers securely sealed when not in use - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. #### Other information Safe handling - Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. Chemwatch: 5471-18 Page 5 of 17 Issue Date: 28/02/2024 Version No: 3.1 AutoTech Epoxy Floor Coating Part A - All Colours Print Date: 07/10/2024 - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms,
cabinets, allowable quantities and minimum storage distances. - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents. #### Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - ▶ Plastic containers may only be used if approved for flammable liquid. - ► Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. In general, uncured epoxy resins have only poor mechanical, chemical and heat resistance properties. However, good properties are obtained by reacting the linear epoxy resin with suitable curatives to form three-dimensional cross-linked thermoset structures. This process is commonly referred to as curing or gelation process. Curing of epoxy resins is an exothermic reaction and in some cases produces sufficient heat to cause thermal degradation if not controlled. Curing may be achieved by reacting an epoxy with itself (homopolymerisation) or by forming a copolymer with polyfunctional curatives or hardeners. In principle, any molecule containing a reactive hydrogen may react with the epoxide groups of the epoxy resin. Common classes of hardeners for epoxy resins include amines, acids, acid anhydrides, phenols, alcohols and thiols. Relative reactivity (lowest first) is approximately in the order: phenol < anhydride < aromatic amine < cycloaliphatic amine < aliphatic amine < thiol. The epoxy curing reaction may be accelerated by addition of small quantities of accelerators. Tertiary amines, carboxylic acids and alcohols (especially phenols) are effective accelerators. Bisphenol A is a highly effective and widely used accelerator, but is now increasingly replaced due to health concerns with this substance. #### Storage incompatibility Suitable container Epoxy resin may be reacted with itself in the presence of an anionic catalyst (a Lewis base such as tertiary amines or imidazoles) or a cationic catalyst (a Lewis acid such as a boron trifluoride complex) to form a cured network. This process is known as catalytic homopolymerisation. The resulting network contains only ether bridges, and exhibits high thermal and chemical resistance, but is brittle and often requires elevated temperature to effect curing, so finds only niche applications industrially. Epoxy homopolymerisation is often used when there is a requirement for UV curing, since cationic UV catalysts may be employed (e.g. for UV coatings). Reactive diluents are stable under recommended storage conditions, but can decompose at elevated temperatures. In some cases, decomposition can cause pressure build-up in closed systems. - Avoid cross contamination between the two liquid parts of product (kit). - If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and evolution of heat (exotherm) may occur. - This excess heat may generate toxic vapour - ▶ Avoid reaction with amines, mercaptans, strong acids and oxidising agents X — Must not be stored together May be stored together with specific preventions May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. #### **SECTION 8 Exposure controls / personal protection** #### Control parameters #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------|-----------------------------|--------------------|---------------------|---------------|---------------| | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 80 ppm / 350 mg/m3 | 655 mg/m3 / 150 ppm | Not Available | Not Available | | Australia Exposure Standards | isobutanol | Isobutyl alcohol | 50 ppm / 152 mg/m3 | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | bisphenol A/ diglycidyl ether resin, liquid | Not Available | Not Available | | xylene | 900 ppm | Not Available | | isobutanol | 1,600 ppm | Not Available | | bisphenol A diglycidyl ether | Not Available | Not Available | | (C12-14)alkylglycidyl ether | Not Available | Not Available | | benzyl alcohol | Not Available | Not Available | Chemwatch: 5471-18 Page 6 of 17 Version No: 3.1 #### AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 | Ingredient | Occupational Exposure Band Rating Occupational Exposure Band Limit | | | |---|--|-----------|--| | bisphenol A/ diglycidyl ether resin, liquid | Е | ≤ 0.1 ppm | | | bisphenol A diglycidyl ether | E | ≤ 0.1 ppm | | | (C12-14)alkylglycidyl ether | E | ≤ 0.1 ppm | | | benzyl alcohol | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5
m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | ## Appropriate engineering Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range |
--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. - · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance. - · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures. · Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus) #### Individual protection measures, such as personal protective equipment - Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure - Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent] - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection. #### Eye and face protection - Alternatively a gas mask may replace splash goggles and face shields. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. ICDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection See Hand protection below Hands/feet protection ▶ Elbow length PVC gloves Chemwatch: 5471-18 Page 7 of 17 #### AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 #### NOTE: Version No. 3.1 - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons. The performance, based on breakthrough times ,of: - · Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent · Butyl Rubber ranges from excellent to good - Nitrile Butyl Rubber (NBR) from excellent to fair. - Neoprene from excellent to fair - Polyvinyl (PVC) from excellent to poo - As defined in ASTM F-739-96 - · Excellent breakthrough time > 480 min - Good breakthrough time > 20 min · Fair breakthrough time < 20 min - Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively) · DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin). DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be ewed prior to use Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times #### Body protection Other protection #### See Other protection below - Overalls. - PVC Apron - ▶ PVC protective suit may be required if exposure severe. - Eyewash unit. - Ensure there is ready access to a safety shower. - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a
sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the $\it computer-generated$ selection: AutoTech Epoxy Floor Coating Part A - All Colours | Material | CPI | |----------------|-----| | VITON | A | | BUTYL | С | | BUTYL/NEOPRENE | С | #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 5 x ES | A-AUS / Class 1
P2 | - | A-PAPR-AUS /
Class 1 P2 | | up to 25 x ES | Air-line* | A-2 P2 | A-PAPR-2 P2 | Chemwatch: 5471-18 Version No: 3.1 #### AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** | HYPALON | С | |-------------------|---| | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | TEFLON | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Ansell Glove Selection | Glove — In order of recommendation | |------------------------------------| | AlphaTec® 38-612 | | AlphaTec® Solvex® 37-185 | | AlphaTec® 58-008 | | AlphaTec® 58-530B | | AlphaTec® 58-530W | | AlphaTec® Solvex® 37-675 | | AlphaTec® 15-554 | | AlphaTec® 58-735 | | AlphaTec® 79-700 | | AlphaTec® 53-001 | The suggested gloves for use should be confirmed with the glove supplier. | up to 50 x ES | - | A-3 P2 | - | |---------------|---|------------|---| | 50+ x ES | - | Air-line** | - | ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | nformation on basic physical and chemical properties | | | | | |--|--|--|----------------|--| | Appearance | Dark coloured viscous flammable liquid with a characteristic odour; does not mix with water. | | | | | Physical state | Liquid | Relative density (Water = 1) | Not Available | | | Odour | Characteristic | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | | Flash point (°C) | 27 | Taste | Not Available | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | Flammability | Flammable. | Oxidising properties | Not Available | | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density (g/m3) | Not Available | | B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion Chemwatch: **5471-18** Page **9** of **17** TOXICITY TOXICITY dermal (rat) LD50: >1200 $mg/kg^{[2]}$ Oral (Mouse) LD50; >500 mg/kg^[2] Not Available AutoTech Epoxy Floor Coating Part A - All Colours bisphenol A/ diglycidyl ether resin, liquid AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: **28/02/2024** Print Date: **07/10/2024** #### **SECTION 10 Stability and reactivity** Version No: 3.1 | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** | Information | on tovic | ological | offooto | |-------------|----------|----------|---------| | heart rate and low blood pressure may also occur. Alkylbenzense are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Headache, fatigue, tiredness, infability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant. Accidental ingestion of the material may be damaging to the health of the individual. Reactive diluters exhibit a range of ingestion hazards. Small amonums swallowed incidental to normal handling operations are not likely to cause injury. Animal testing showed that a single dose of bisphenol A digivotidy lether (BADGE) given by mouth, caused an increase in immature sperm. Following a single dose of isobutanol in rats, deaths were delayed for several days and hepatic degeneration was evident. This material can cause infammation of the skin on contact in some persons. The material may accentuate any pre-existing demantistic condition. Bisphenol A digivotidy lether (BADGE) may produce device which are similar to the material may accentuate and with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days Application of isobutanol to human skin produced slight redness and blood congestion. Skin contact this reactive dilutents may cause eligible to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns. Doen outs, shraded or irritated skin should not be exposed to this material. Toxic effects may result from skin absorption. Entry into the blood-steram, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Feye Eye Eye Eye Eye Eye Eye Ey | formation on toxicological ef | fects |
--|-------------------------------|--| | Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. Animal testing showed that a single dose of bisphenol A diglycidy dether (BADGE) given by mouth, caused an increase in immature sperm. Following a single dose of isobutanol in rats, deaths were delayed for several days and hepatic degeneration was evident. This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produce severe skin irritation when applied daily for 4 hours over 20 days Application of isobutanol to human skin produce displit redness and blood congestion. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns. Open cuts, abraded or irritated skin should not be exposed to this material Toxic effects may result from skin absorption. Ether into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. If applied to the eyes, this material causes severe eye damage. Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the cornea. Eye contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal test | Inhaled | lack of co-ordination, and vertigo. In animal testing, exposure to aerosols of reactive diluents (especially o-cresol glycidyl ether, CAS RN:2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus and respiratory tract. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Isobutanol appears to be more toxic than n-butyl alcohol. It may result in narcosis and death. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. | | The material may accentuate any pre-existing dermatitis condition Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days Application of isobutanol to human skin produced slight redness and blood congestion. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns. Open cuts, abraded or irritated skin should not be exposed to this material Toxic effects may result from skin absorption Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. If applied to the eyes, this material causes severe eye damage. Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the cornea. Eye contact with reactive diluents may cause deerate to severe irritation but no permanent injury to the cornea. Eye contact with reactive diluents may cause moderate to severe irritation but no permanent injury to the cornea. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal testing that exposure to this material may result in reduced fertility. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Bisphenol A may have effects similar to female sex hormones and when | Ingestion | Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury. Animal
testing showed that a single dose of bisphenol A diglycidyl ether (BADGE) given by mouth, caused an increase in immature sperm. | | Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the cornea. Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe damage to the cornea. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal testing that exposure to this material may result in reduced fertility. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male reproductive organs and sperm. Glycidyl ethers can cause genetic damage and cancer. Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours. Oral exposure of rats to isobutanol caused cancers of the guillet and stomach, liver or blood (myelogenous leukaemia). Abnormal non-cance growths were also more common in those animals exposed to isobutanol. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions. Exposure to some reacti | Skin Contact | The material may accentuate any pre-existing dermatitis condition Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days Application of isobutanol to human skin produced slight redness and blood congestion. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns. Open cuts, abraded or irritated skin should not be exposed to this material Toxic effects may result from skin absorption Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the | | There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal testing that exposure to this material may result in reduced fertility. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male reproductive organs and sperm. Glycidyl ethers can cause genetic damage and cancer. Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours. Oral exposure of rats to isobutanol caused cancers of the gullet and stomach, liver or blood (myelogenous leukaemia). Abnormal non-cance growths were also more common in those animals exposed to isobutanol. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions. Exposure to some reactive diluents (notably, neopentylglycol diglycidyl ether, CAS RN: 17557-23-2) has caused cancer in some animal testing. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of | Еуе | Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the cornea. Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe damage | | , | Chronic | There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal testing that exposure to this material may result in reduced fertility. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male reproductive organs and sperm. Glycidyl ethers can cause genetic damage and cancer. Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours. Oral exposure of rats to isobutanol caused cancers of the gullet and stomach, liver or blood (myelogenous leukaemia). Abnormal non-cance growths were also more common in those animals exposed to isobutanol. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions. Exposure to some reactive diluents (notably, neopentylglycol diglycidyl ether, CAS RN: 17557-23-2) has caused cancer in some animal testing. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of | IRRITATION Not Available IRRITATION Eye (rabbit): 100mg - Mild TOXICITY Version No: 3.1 Page 10 of 17 AutoTech Epoxy Floor Coating Part A - All Colours IRRITATION Issue Date: **28/02/2024**Print Date: **07/10/2024** | | TONIOTT | IKKITATION | | |------------------------------|---|--|--| | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | | | Inhalation (Rat) LC50: 5000 ppm4h ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | | xylene | Oral (Mouse) LD50; 2119 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | | | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (rabbit):500 mg/24h moderate | | | | | Skin: adverse
effect observed (irritating) ^[1] | | | | | Cimin data sociotical (imidaling) | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Eye (rabbit): 2 20 mg/24h-moderate | | | | Inhalation(Rabbit) LC50; 2.63 mg/L4h ^[2] | Eye (rabbit): 2 mg/24h - SEVERE | | | isobutanol | Oral (Rat) LD50: 2460 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (rabbit): mg (open)-SEVERE | | | | | Skin: adverse effect observed (irritating) ^[1] | | | | | | | | | TOXICITY | IRRITATION | | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 2 mg/24h - SEVERE | | | bisphenol A diglycidyl ether | Oral (Rat) LD50: >2000 mg/kg ^[1] | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (rabbit): 500 mg - mild | | | | | Skin: adverse effect observed (irritating) ^[1] | | | | TOXICITY | IDDITATION | | | | | IRRITATION Eye (rabbit): mild [Ciba] | | | | Oral (Rat) LD50: >10000 mg/kg ^[2] | | | | | | Eye: adverse effect observed (irritating)[1] | | | (C12-14)alkylglycidyl ether | | Skin (guinea pig): sensitiser | | | (C12-14)aikyigiyoluyi etilei | | Skin (human): Irritant Skin (human): non- sensitiser | | | | | Skin (rabbit): moderate | | | | | Skin : Moderate | | | | | Skin: adverse effect observed (irritating) ^[1] | | | | | Citin. develop choot object tod (initialing) | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 2000 mg/kg ^[2] | Eye (rabbit): 0.75 mg open SEVERE | | | hannel alaskal | Inhalation (Rat) LC50: >4.178 mg/L4h ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | benzyl alcohol | Oral (Rat) LD50: 1230 mg/kg ^[2] | Skin (man): 16 mg/48h-mild | | | | | Skin (rabbit):10 mg/24h open-mild | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | | | | | Legend: | Value obtained from Europe ECHA Registered Substate specified data extracted from RTECS - Register of Toxic I | nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise | | | | opositiou data extracted from NTLOS - Neglister of Toxic I | Enot of ortalitical dubstances | | | | Factoriality has been about a first and the | shit famala) NOEL 400 maller (tti-tNOEL / 1 100 " | | | | ` | obit, female) NOEL 180 mg/kg (teratogenicity; NOEL (maternal 60 mg/kg
or bisphenols consists of two phenolic rings joined together through a bridging | | | | carbon. This class of endocrine disruptors that mimic oes | trogens is widely used in industry, particularly in plastics. pestrogenic activity in human breast cancer cell line MCF-7, but there were | | | | · · · · · · · · · · · · · · · · · · · | BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, | | | | which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these | | | | | | A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these of the phenyl rings and the bridging alkyl moiety markedly influence the activities. | | | BISPHENOL A/ DIGLYCIDYL | | synthesis and secretion of cell type-specific proteins. When ranked by proliferative | | | ETHER RESIN, LIQUID | | arbon, the lower the concentration needed for maximal cell yield; the most active rbon. Bisphenols with two hydroxyl groups in the para position and an angular | | | | configuration are suitable for appropriate hydrogen bondir | ng to the acceptor site of the oestrogen receptor. | | | | | bisphenols (BPs) to induce or inhibit estrogenic and androgenic activity. BPA, PC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4- | | | | bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B | B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced | | | | | tivity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also
und to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERbeta-mediated | | | | activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BF | PS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERalpha-mediated | | | | activity. None of the BPs induced AR-mediated activity. | | | Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis Reproductive effector in rats XYLENE ISOBUTANOL Chemwatch: **5471-18** Page **11** of **17** #### AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** BISPHENOL A DIGLYCIDYL ETHER Version No: 3.1 is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. also damage male reproductive organs and sperm. Glycidyl ethers can cause genetic damage and cancer. 55badger BENZYL ALCOHOL Adverse reactions to fragrances in perfumes and fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Symptoms may include general unwellness, coughing, phlegm, wheezing, chest tightness, headache, shortness of breath with exertion, acute respiratory illness, hayfever, asthma and other respiratory diseases. Perfumes can induce excess reactivity of the airway without producing allergy or airway obstruction. Breathing through a carbon filter mask had no protective effect. Occupational asthma caused by perfume substances, such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms, even though the exposure is below occupational exposure limits. Prevention of contact sensitization to fragrances is an important objective of public health risk management. Hands: Contact sensitization may be the primary cause of hand eczema or a complication of irritant or atopic hand eczema. However hand eczema is a disease involving many factors, and the clinical significance of fragrance contact allergy in severe, chronic hand eczema may not be clear. Underarm: Skin inflammation of the armpits may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a skin specialist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. related to the later diagnosis of perfume allergy. Face: An important manifestation of fragrance allergy from the use of cosmetic products is eczema of the face. In men, after-shave products can cause eczema around the beard area and the adjacent part of the neck. Men using wet shaving as opposed to dry have been shown to have an increased risk of allergic to fragrances. Irritant reactions: Some individual fragrance ingredients, such as citral, are known to be irritant. Fragrances may cause a dose-related contact urticaria (hives) which is not allergic; cinnamal, cinnamic alcohol and Myroxylon pereirae are known to cause hives, but others, including menthol, vanillin and benzaldehyde have also been reported. Pigmentary anomalies: Type IV allergy is responsible for "pigmented cosmetic dermatitis", referring to increased pigmentation on the face and neck. Testing showed a number of fragrance ingredients were associated, including jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol and geranium oil. Light reactions: Musk ambrette produced a number of allergic reactions mediated by light and was later banned from use in Europe. Furocoumarins (psoralens) in some plant-derived fragrances have caused phototoxic reactions, with redness. There are now limits for the amount of furocoumarins in fragrances. Phototoxic reactions still occur, but are rare. General/respiratory: Fragrances are volatile, and therefore, in addition to skin exposure, a perfume also exposes the eyes and the nose / airway. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. A significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients and hand eczema. Fragrance allergens act as haptens, low molecular weight chemicals that cause an immune response only when attached to a carrier
protein. However, not all sensitizing fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but is transformed into a hapten in the skin (bioactivation), usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or a prohapten, or both. Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Various enzymes play roles in both activating and deactivating prohaptens. Skin-sensitizing prohaptens can be recognized and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or studies of sensitization. QSAR prediction: Prediction of sensitization activity of these substances is complex, especially for those substances that can act both as pre- and prohaptens. CYP1A2 is a member of the cytochrome P450 super family, is one of the best characterized. It is responsible for the metabolism of commonly drugs belonging to classes such as antidepressants, antipsychotics, mood stabilizers, beta blockers and sedative/hypnotics CYP1A2 also metabolises a number of procarcinogens (such as those in cigarettes). Cigarette smoking may lead to three fold increase in 1A2 activity, which explains why smokers require higher doses of beta blockers than than non-smokers Drugs that inhibit CYP1A2 will predictably increase the plasma concentrations of the medications or decrease in clearance of substrates. Drugs such as ciprofloxacin, fluvoxamine, verapamil cimetidine, caffeine and isoniazid are inhibitors of CYP1A2 enzyme. Vegetables such as grape fruit juice, cumic and turmeric are inhibitors of the CYP1A2 enzyme which may leads to increase plasma concentration of psychotropics Inhibition of NF-kB in vivo can be detrimental. NF-kB controls multiple functions in homeostasis including a functional immune response, cell cycle, and cell death. Genetic studies in mice and analysis of naturally occurring mutations in humans point to specific developmental and immune consequences due to altering NF-kB activity. The same functions that make NF-kB attractive for developing inhibitors for treating disease also play a role in homeostasis, and disruption of the NF-kB pathway during development or in adults leads to unfavorable and potentially unhealthy consequences. NF-kB plays a role in multiple homeostatic cellular processes including response to stimuli,cell proliferation, and death, regulating communication between cells, but is also tightly linked with other signaling pathways within the cell, such a p38 and JNK. In addition to mediating proinflammatory responses, NF-kB may regulate apoptotic and cell cycle changes induced by cellular stress, DNA damage or oncogenes by communication with the tumor suppressor p53. Disruption of normal cellular responses by inhibiting NF-kB can have adverse consequences such as immune suppression and tissue damage. Understanding the consequences of lack of NF-kB activity in adult humans comes from observation of naturally occurring genetic Understanding the consequences of lack of NF-kB activity in adult humans comes from observation of naturally occurring genetic deficiencies in this pathway. Mutations have been discovered in humans in signaling molecules upstream of NF-kB resulting in defects in development or immunity. Genetic defects have also been discovered in genes that immediately affect NF-kB activation including IKK gamma (NEMO), a subunit of the IKK complex, and IkBalpha. The IKK gamma mutations result in a defective IKK complex and the IkBalpha mutation results in an IkBalpha protein that cannot be phosphorylated and degraded. Both genetic defects result in suppressed NF-kB activation and ectodermal dysplasia with immunodeficiency. In general patients with these genetic defects have multiple immunological defects including impaired innate immunity, impaired antibody production, and ultimately severe bacterial infections. Understanding the immune defects and susceptibilities in patients with genetic defects in the NF-kB pathway will help prepare for potential adverse effects of pharmacologic NF-kB inhibitors The requirement for NF-kB in the development and maintenance of the immune system is well documented. NF-kB is required for survival during fetal development and for normal lymphocyte generation in adult mice. Removal of the p65 (RelA) subunit of NF-kB or the IKKbeta gene results in death during fetal development primarily due to massive liver apoptosis Fetal liver stem cells from p65 or IKKbeta deficient mice have been transplanted into irradiated hosts revealing a specific requirement of NF-kB for T-cells, B-cells, and common lymphoid progenitor development but not for myeloid cells or stem cells. The failure to produce lymphocytes is mediated through hypersensitivity to TNF due to lack of NF-kB activity. Lymphocyte depletion with chemical or genetic inhibition of NF-kB have implications for therapeutic potential use in humans. The double-sided nature of NF-kB inhibition is clear in this instance where chemical inhibition in vivo mimics genetic experiments inducing rapid TNF-dependent apoptosis. Rapid induction of apoptosis may be an advantage for treating some forms of cancer, but at the same time cause depletion of some lymphocyte populations. In addition to controlling lymphocyte development, NF-kB plays a major role in both adaptive and innate immunity. Various signaling pathways responding to receptor recognition of immune challenge converge on NF-kB which then regulates genes that control the immune response. Both T-cell receptor and B-cell receptors activate NF-kB through phosphorylation of CARMA1 by PKC theta and PKC beta respectively, resulting in recruitment and activation of IKK and ultimately expression of genes that control cellular activation, proliferation, and survival. In addition, NF-kB plays a role in T-cell response to costimulatory signals. Cells respond to pathogenic microorganisms in part through recognition by Toll-like receptors (TLRs).TLR-family members recognize different molecular structures present in microbes and respond by activating signaling pathways including NF-kB leading to expression of anti-microbial effector molecules, as well as molecules that help in development of the adaptive immune response. Inhibition of NF-kB during TLR stimulation can lead to macrophage apoptosis, a Chemwatch: 5471-18 Page 12 of 17 AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 mechanism used by some pathogens to help evade immune response. NF-kB is clearly required for normal mature B-cell and T-cell maintenance and function, including regulatory, memory, and natural killer-like T cells. Inhibition of NF-kB activation in lymphocytes results in defects in growth, survival, and cytokine production and blocks multiple steps in germinal center formation. Given the diverse roles NF-kB plays in immune response to pathogens it is not surprising to find mice genetically deficient in components of the NF-kB pathway are susceptible to parasitic and bacterial infection. The role of NF-kB in inhibition of apoptosis is one of the factors that make it a potential target for cancer therapy. NF-kB deficient mice die during embryogenesis in part due to TNF-mediated liver damage. Adult mice with impaired NF-kB targeted to the liver have normal liver function, but have severe liver damage after challenge with concanavalin A, a pan-T cell activator. Liver damage occurs due to sustained activation of JNK due to accumulation of reactive oxygen species (ROS) in the absence of normal NF-kB activation. The aryl alkyl alcohol (AAA) fragrance ingredients have diverse chemical structures, with similar metabolic and toxicity profiles. The AAA fragrances demonstrate low acute and subchronic toxicity by skin contact and swallowing. At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal. With the exception of benzyl alcohol, phenethyl and 2-phenoxyethyl AAA alcohols, testing in humans indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low. Testing suggests that at current human exposure levels, this group of chemicals does not cause maternal or developmental toxicity. Animal testing shows no cancer-causing evidence, with little or no genetic toxicity. It has been concluded that these materials would not present a safety concern at current levels of use, as fragrance ingredients. This is a member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS), based partly on their self-limiting properties as flavouring substances in food. In humans and other animals, they are rapidly absorbed, broken down and excreted, with a wide safety margin. They also lack significant potential to cause genetic toxicity and mutations. The intake of benzyl derivatives as natural components of traditional foods is actually higher than the intake as intentionally added flavouring substances Unlike benzylic alcohols, the beta-hydroxyl group of the members of benzyl alkyl alcohols contributes to break down reactions but do not undergo phase II metabolic activation. Though structurally similar to cancer causing ethyl benzene, phenethyl alcohol is only of negligible concern due to limited similarity in their pattern of activity. Benzyl alcohol, benzoic acid and its sodium and potassium salt have a common metabolic and excretion pathway. All but benzyl alcohol are considered to be unharmful and of low
acute toxicity. They may cause slight irritation by oral, dermal or inhalation exposure except sodium benzoate which doesn't irritate the skin. Studies showed increased mortality, reduced weight gain, liver and kidney effects at higher doses, also, lesions of the brains, thymus and skeletal muscles may occur with benzyl alcohol. However, they do not cause cancer, genetic or reproductive toxicity. Developmental toxicity may occur but only at maternal toxic level. **BISPHENOL A/ DIGLYCIDYL** ETHER RESIN, LIQUID & **BISPHENOL A DIGLYCIDYL ETHER & (C12-**14)ALKYLGLYCIDYL ETHER & BENZYL ALCOHOL Version No: 3.1 The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons BISPHENOL A/ DIGI YCIDYL ETHER RESIN, LIQUID & XYLENE & BISPHENOL A DIGLYCIDYL ETHER The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. **BISPHENOL A/ DIGLYCIDYL** ETHER RESIN, LIQUID & **BISPHENOL A DIGLYCIDYL ETHER** Animal testing over 13 weeks showed bisphenol A diglycidyl ether (BADGE) caused mild to moderate, chronic, inflammation of the skin. Reproductive and Developmental Toxicity: Animal testing showed BADGE given over several months caused reduction in body weight but had no reproductive effects Cancer-causing potential: It has been concluded that bisphenol A diglycidyl ether cannot be classified with respect to its cancer-causing potential in humans. Genetic toxicity: Laboratory tests on genetic toxicity of BADGE have so far been negative. Immunotoxicity: Animal testing suggests regular injections of diluted BADGE may result in sensitization. Consumer exposure: Comsumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Testing has not found any evidence of hormonal disruption. **XYLENE & ISOBUTANOL XYLENE & ISOBUTANOL &** The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. BENZYL ALCOHOL The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin BISPHENOL A DIGLYCIDYL ETHER & (C12-14)ALKYLGLYCIDYL ETHER Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) share many common characteristics with respect to animal toxicology. One such oxirane is ethyloxirane; data presented here may be taken as representative. For 1,2-butylene oxide (ethyloxirane): In animal testing, ethyloxirane increased the incidence of tumours of the airways in animals exposed via inhalation. However, tumours were not observed in mice chronically exposed via skin. Two structurally related substances, oxirane (ethylene oxide) and methyloxirane (propylene oxide), which are also direct-acting alkylating agents, have been classified as causing cancer. | Acute Toxicity | X | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Leaend: 💢 – Data either not available or does not fill the criteria for classification - Data available to make classification #### **SECTION 12 Ecological information** #### Toxicity | | Endpoint | Test Duration (hr) | Species | Value | Source | |--|------------------|--------------------|---------------|------------------|------------------| | AutoTech Epoxy Floor
Coating Part A - All Colours | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | bisphenol A/ diglycidyl ether resin, liquid | EC50 | 48h | Crustacea | ~2mg/l | 2 | | resiii, iiquiu | EC50(ECx) | 48h | Crustacea | ~2mg/l | 2 | Chemwatch: **5471-18** Version No: **3.1** #### AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** | | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------------------|-----------|--------------------|-------------------------------|------------------|--------| | | EC50 | 72h | Algae or other aquatic plants | 4.6mg/l | 2 | | xylene | EC50 | 48h | Crustacea | 1.8mg/l | 2 | | | LC50 | 96h | Fish | 2.6mg/l | 2 | | | NOEC(ECx) | 73h | Algae or other aquatic plants | 0.44mg/ | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 593mg/l | 2 | | isobutanol | EC50 | 48h | Crustacea | ca.600mg/ | 1 | | isobutanoi | LC50 | 96h | Fish | 901-
1000mg/L | 4 | | | NOEC(ECx) | 504h | Crustacea | 4mg/L | 5 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 9.4mg/ | 2 | | bisphenol A diglycidyl ether | EC50 | 48h | Crustacea | 1.1mg/ | 2 | | | LC50 | 96h | Fish | 1.2mg/ | 2 | | | NOEC(ECx) | 504h | Crustacea | 0.3mg/ | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 6.07mg/l | 2 | | (C12-14)alkylglycidyl ether | LC50 | 96h | Fish | >5000mg/ | 2 | | | EC50(ECx) | 48h | Crustacea | 6.07mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 336h | Fish | 5.1mg/l | 2 | | benzyl alcohol | LC50 | 96h | Fish | 10mg/l | 2 | | | EC50 | 72h | Algae or other aquatic plants | 500mg/l | 2 | | | EC50 | 48h | Crustacea | 230mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 76.828mg/ | 2 | Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. **DO NOT** discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|------------------------------|-----------------------------| | bisphenol A/ diglycidyl ether resin, liquid | HIGH | HIGH | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | isobutanol | LOW (Half-life = 14.42 days) | LOW (Half-life = 4.15 days) | | bisphenol A diglycidyl ether | HIGH | HIGH | | benzyl alcohol | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---|--------------------------| | bisphenol A/ diglycidyl ether resin, liquid | LOW (LogKOW = 2.6835) | | xylene | MEDIUM (BCF = 740) | | isobutanol | LOW (LogKOW = 0.76) | | bisphenol A diglycidyl ether | MEDIUM (LogKOW = 3.8446) | | benzyl alcohol | LOW (LogKOW = 1.1) | #### Mobility in soil | Ingredient | Mobility | |---|--------------------------| | bisphenol A/ diglycidyl ether resin, liquid | LOW (Log KOC = 51.43) | | isobutanol | MEDIUM (Log KOC = 2.048) | | bisphenol A diglycidyl ether | LOW (Log KOC = 1767) | | benzyl alcohol | LOW (Log KOC = 15.66) | #### **SECTION 13 Disposal considerations** Page 14 of 17 Chemwatch: 5471-18 Issue Date: 28/02/2024 Version No: 3.1 Print Date: 07/10/2024 AutoTech Epoxy Floor Coating Part A - All Colours #### ▶ Containers may still present a chemical hazard/ danger when empty. • Return to supplier for reuse/ recycling if possible. - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. #### Waste Management Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and their formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment. Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed. Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished articles from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws. Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of disposal and recovery is combustion with energy recovery. #### ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be
considered first. - Where in doubt contact the responsible authority. Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010 - ▶ Recycle wherever possible - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 Transport information** Product / Packaging disposal # **Labels Required** #### **Marine Pollutant** HAZCHEM •3Y #### Land transport (ADG) | 14.1. UN number or ID number | 1263 | | |------------------------------------|-------------------------------------|---| | 14.2. UN proper shipping name | | lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL
g or reducing compound) | | 14.3. Transport hazard class(es) | Class
Subsidiary Hazard | Not Applicable | | 14.4. Packing group | III | | | 14.5. Environmental hazard | Environmentally hazard | lous | | 14.6. Special precautions for user | Special provisions Limited quantity | 163 223 367
5 L | #### Air transport (ICAO-IATA / DGR) | 14.1. UN number | 1263 | | | | |------------------------------------|--|-------------------------------|--|--| | 14.2. UN proper shipping name | Paint (including paint, lacquer, enar | mel, stain, shellac, varnish, | polish, liquid filler and liquid lacquer base) | | | 14.3. Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subsidiary Hazard ERG Code | 3
Not Applicable
3L | | | | 14.4. Packing group | Ш | | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | 14.6. Special precautions for user | Special provisions | | A3 A72 A192 | | | | Cargo Only Packing Instructions | | 366 | | | | Cargo Only Maximum Qty / Pack | | 220 L | | | | | | | | Chemwatch: **5471-18** Page **15** of **17** AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** | Passenger and Cargo Packing Instructions | 355 | |---|------| | Passenger and Cargo Maximum Qty / Pack | 60 L | | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | Passenger and Cargo Limited Maximum Qty / Pack | 10 L | #### Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1263 | | | |------------------------------------|--|-------------------------------------|--| | 14.2. UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) | | | | 14.3. Transport hazard class(es) | IMDG Class IMDG Subsidiary Ha | 3
izard Not Applicable | | | 14.4. Packing group | III | | | | 14.5 Environmental hazard | Marine Pollutant | | | | 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-E , S-E
163 223 367 955
5 L | | #### 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable Version No: 3.1 #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---|---------------| | bisphenol A/ diglycidyl ether resin, liquid | Not Available | | xylene | Not Available | | isobutanol | Not Available | | bisphenol A diglycidyl ether | Not Available | | (C12-14)alkylglycidyl ether | Not Available | | benzyl alcohol | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |---|---------------| | bisphenol A/ diglycidyl ether resin, liquid | Not Available | | xylene | Not Available | | isobutanol | Not Available | | bisphenol A diglycidyl ether | Not Available | | (C12-14)alkylglycidyl ether | Not Available | | benzyl alcohol | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### bisphenol A/ diglycidyl ether resin, liquid is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals $\label{eq:australia} \textbf{Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5}$ Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### xylene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic #### isobutanol is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) #### bisphenol A diglycidyl ether is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic #### AutoTech Epoxy Floor Coating Part A - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### (C12-14)alkylglycidyl ether is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List #### benzyl alcohol is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) #### **Additional Regulatory Information** Not Applicable Version No: 3.1 #### **National Inventory Status** | National Inventory | Status | | |---|--|--| | Australia - AIIC / Australia Non-
Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (bisphenol A/ diglycidyl ether resin, liquid; xylene; isobutanol; bisphenol A diglycidyl ether; (C12-14)alkylglycidyl ether; benzyl alcohol) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (bisphenol A diglycidyl ether; (C12-14)alkylglycidyl ether) | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 28/02/2024 | |---------------|------------| | Initial Date | 04/06/2021 | #### **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|---| | 2.1 | 04/06/2021 | Hazards identification - Classification, Firefighting measures - Fire Fighter (fire/explosion hazard), Handling and storage - Storage (storage incompatibility) | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many
factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ES: Exposure Standard - OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - LOAEL: Lowest Observed Adverse Effect Level - TLV: Threshold Limit Value - LOD: Limit Of Detection - OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - BEI: Biological Exposure IndexDNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ AllC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances Page 17 of 17 Issue Date: 28/02/2024 Chemwatch: 5471-18 Version No: 3.1 Print Date: 07/10/2024 #### AutoTech Epoxy Floor Coating Part A - All Colours - ▶ ELINCS: European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - ▶ NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. end of SDS ## **AutoTech Epoxy Floor Coating Part B - All Colours** #### **AutoTech** Chemwatch: 5471-19 Version No: 3.1 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **28/02/2024** Print Date: **07/10/2024** S.GHS.AUS.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking | AutoTech Epoxy Floor Coating Part B - All Colours | | |---|--| | Not Applicable | | | 41090413; 41090416; 41090402; | | | AMINES, FLAMMABLE, CORROSIVE, N.O.S. (contains xylene and isophorone diamine) | | | Not Applicable | | | Not Available | | | | | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Use according to manufacturer's directions. | |--------------------------|---| | | | #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | Dy-Mark | |-------------------------|--| | Address | 89 Formation Street Wacol QLD 4076 Australia | | Telephone | +61 7 3327 3004 | | Fax | +61 7 3327 3009 | | Website | https://www.dymark.com.au | | Email | info@dymark.com.au | #### Emergency telephone number | Association / Organisation | Dy-Mark | |-----------------------------------|-----------------| | Emergency telephone numbers | +61 7 3327 3099 | | Other emergency telephone numbers | Not Available | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture #### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. #### Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 2 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 3 | | 1 = Low | | Reactivity | 2 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | S5 | |-------------------------------|--| | Classification ^[1] | Flammable Liquids Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 1B, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Acute Toxicity (Inhalation) Category 4, Sensitisation (Respiratory) Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Acute Hazard Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ## Label elements Hazard pictogram(s) Version No: 3.1 #### AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** | Signal word | Danger | | | | |--------------------------------|--|--|--|--| | Hazard statement(s) | | | | | | H226 | Flammable liquid and vapour. | | | | | H302 | Harmful if swallowed. | | | | | H312 | Harmful in contact with skin. | | | | | H314 | Causes severe skin burns and eye damage. | | | | | H317 | May cause an allergic skin reaction. | | | | | H332 | Harmful if inhaled. | | | | | H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled. | | | | | H335 | May cause respiratory irritation. | | | | | H336 | May cause drowsiness or dizziness. | | | | | H412 | Harmful to aquatic life with long lasting effects. | | | | | AUH019 | May form explosive peroxides. | | | | | Precautionary statement(s) Pre | evention | | | | | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | | | | P260 | Do not breathe mist/vapours/spray. | | | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | | | P271 | Use only a well-ventilated area. | | | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | | | P284 | [In case of inadequate ventilation] wear respiratory protection. | | | | | P240 | Ground and bond container and receiving equipment. | | | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | | | P242 | Use non-sparking tools. | | | | | P243 | Take action to prevent static discharges. | | | | | P270 | Do not eat, drink or smoke when using this product. | | | | | P273 | Avoid release to the environment. | | | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | | | | Precautionary statement(s) Re | sponse | | | | | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. If more than 15 mins from Doctor, INDUCE VOMITING (if conscious). | | | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | | | | P342+P311 | If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider. | | | | | P370+P378 | In case of fire: Use alcohol resistant foam or fine spray/water fog to extinguish. | | | | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | | | | P363 | Wash contaminated clothing before reuse. | | | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | | | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | | | | Precautionary statement(s) Sto | orage | | | | | P403+P235 | Store in a well-ventilated place. Keep cool. | | | | | P405 | Store locked up. | | | | #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures Precautionary statement(s) Disposal #### Mixtures | CAS No | %[weight] | Name | | |------------|-----------|---|--| | 1330-20-7 | 20-30 | xylene | | | 25036-25-3 | 15-20 | bisphenol A/ bisphenol A diglycidyl ether polymer | | | 100-51-6 | 10-15 | benzyl alcohol | | | 2855-13-2 | 10-15 | isophorone diamine | | | 68082-29-1 | 5-12 | tall oil/ triethylenetetramine polyamides | | | 112-24-3 | 1-2 | <u>triethylenetetramine</u> | | Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. Chemwatch: 5471-19 Page 3 of 21 Issue Date: 28/02/2024 Version No. 3.1 Print Date:
07/10/2024 AutoTech Epoxy Floor Coating Part B - All Colours Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available #### **SECTION 4 First aid measures** #### Description of first aid measures If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. **Eye Contact** Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. For amines: If liquid amines come in contact with the eyes, irrigate immediately and continuously with low pressure flowing water, preferably from an eve wash fountain, for 15 to 30 minutes For more effective flushing of the eyes, use the fingers to spread apart and hold open the eyelids. The eyes should then be "rolled" or moved in all directions ▶ Seek immediate medical attention, preferably from an ophthalmologist. If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. ▶ Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. For amines: In case of major exposure to liquid amine, promptly remove any contaminated clothing, including rings, watches, and shoe, preferably Skin Contact under a safety shower Wash skin for 15 to 30 minutes with plenty of water and soap. Call a physician immediately. • Remove and dry-clean or launder clothing soaked or soiled with this material before reuse. Dry cleaning of contaminated clothing may be more effective than normal laundering. Inform individuals responsible for cleaning of potential hazards associated with handling contaminated clothing. Discard contaminated leather articles such as shoes, belts, and watchbands. ▶ Note to Physician: Treat any skin burns as thermal burns. After decontamination, consider the use of cold packs and topical antibiotics. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. ▶ Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. • Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may Inhalation be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) For amines: ▶ All employees working in areas where contact with amine catalysts is possible should be thoroughly trained in the administration of appropriate first aid procedures. Experience has demonstrated that prompt administration of such aid can minimize the effects of accidental exposure. Promptly move the affected person away from the contaminated area to an area of fresh air. ▶ Keep the affected person calm and warm, but not hot. If breathing is difficult, oxygen may be administered by a qualified person. If breathing stops, give artificial respiration. Call a physician at once Avoid giving milk or oils. Avoid giving alcohol. ▶ For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Ingestion Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. For amines: If liquid amine are ingested, have the affected person drink several glasses of water or milk. Do not induce vomiting. Immediately transport to a medical facility and inform medical personnel about the nature of the exposure. The decision of whether to induce vomiting should be made by an attending physician. Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For acute or short-term repeated exposures to highly alkaline materials: - ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - Fig. 1 The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. INGESTION: Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. Chemwatch: 5471-19 Page 4 of 21 Issue Date: 28/02/2024 Version No: 3.1 Print Date: 07/10/2024 #### AutoTech Epoxy Floor Coating Part B - All Colours - Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). #### SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] For amines: - Certain amines may cause injury to the respiratory tract and lungs if aspirated. Also, such products may cause tissue destruction leading to stricture. If lavage is performed, endotracheal and/or esophagoscopic control is suggested. - No specific antidote is known. - Care should be supportive and treatment based on the judgment of the physician in response to the reaction of the patient. Laboratory animal studies have shown that a few amines are suspected of causing depletion of certain white blood cells and their precursors in lymphoid tissue. These effects may be due to an immunosuppressive mechanism. Some persons with hyperreactive airways (e.g., asthmatic persons) may experience wheezing attacks (bronchospasm) when exposed to airway irritants. Lung injury may result following a single massive overexposure to high vapour concentrations or multiple exposures to lower concentrations of any pulmonary irritant material. Health effects of amines, such as skin irritation and transient corneal edema ("blue haze," "halo effect," "glaucopsia"), are best prevented by means of formal worker education, industrial hygiene monitoring, and exposure control methods. Persons who are highly sensitive to the triggering effect of non-specific irritants should not be assigned to jobs in which such agents are used, handled, or manufactured. Medical surveillance programs should consist of a pre-placement evaluation to determine if workers or applicants have any impairments (e.g., hyperreactive airways or bronchial asthma) that would limit their fitness for work in jobs with potential for exposure to amines. A clinical baseline can be established at the time of this evaluation. Periodic medical evaluations can have significant value in the early detection of disease and in providing an opportunity for health counseling. Medical personnel conducting medical surveillance of individuals potentially exposed to polyurethane amine catalysts should consider the following - Health history, with emphasis on the respiratory system and history of infections Physical examination, with emphasis on the respiratory system and the lymphoreticular organs (lymph nodes, spleen, etc.) - Lung function tests, pre- and post-bronchodilator if indicated - Total and differential white blood cell count - Serum protein electrophoresis Persons who are concurrently exposed to isocyanates also should be kept under medical surveillance. Pre-existing medical conditions generally
aggravated by exposure include skin disorders and allergies, chronic respiratory disease (e.g. bronchitis, asthma, emphysema), liver disorders, kidney disease, and eye disease Broadly speaking, exposure to amines, as characterised by amine catalysts, may cause effects similar to those caused by exposure to ammonia. As such, amines should be considered potentially injurious to any tissue that is directly contacted. Inhalation of aerosol mists or vapors, especially of heated product, can result in chemical pneumonitis, pulmonary edema, laryngeal edema, and delayed scarring of the airway or other affected organs. There is no specific treatment. Clinical management is based upon supportive treatment, similar to that for thermal burns. Persons with major skin contact should be maintained under medical observation for at least 24 hours due to the possibility of delayed reactions. #### Polyurethene Amine Catalysts: Guidelines for Safe Handling and Disposal Technical Bulletin June 2000 Alliance for Polyurethanes Industry Clinical experience of benzyl alcohol poisoning is generally confined to premature neonates in receipt of preserved intravenous salines - Metabolic acidosis, bradycardia, skin breakdown, hypotonia, hepatorenal failure, hypotension and cardiovascular collapse are characteristic. - High urine benzoate and hippuric acid as well as elevated serum benzoic acid levels are found. - The so-called "gasping syndrome describes the progressive neurological deterioration of poisoned neonates. - Management is essentially supportive. For exposures to quaternary ammonium compounds; - For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric lavage and emetic drugs. - For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of Ipecac or perform gastric lavage - If hypotension becomes severe, institute measures against circulatory shock - If respiration laboured, administer oxygen and support breathing mechanically. Oropharyngeal airway may be inserted in absence of gag reflex. Epiglottic or laryngeal edema may necessitate a tracheotomy - Persistent convulsions may be controlled by cautious intravenous injection of diazepam or short-acting barbiturate drugs. [Gosselin et al. Clinical Toxicology of Commercial Products1 For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - ▶ Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine 2 mg/min Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung oedema often do not manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation is therefore essential. Immediate administration of an appropriate spray, by a doctor or a person authorised by him/her should be considered. (ICSC24419/24421 #### **SECTION 5 Firefighting measures** #### Extinguishing media - Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. Chemwatch: **5471-19** Page **5** of **21** #### AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters Version No. 3.1 - ▶ Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. #### Fire Fighting - ► DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. #### For amines - For firefighting, cleaning up large spills, and other emergency operations, workers must wear a self-contained breathing apparatus with full face-piece, operated in a pressure-demand mode. - Airline and air purifying respirators should not be worn for firefighting or other emergency or upset conditions. - Respirators should be used in conjunction with a respiratory protection program, which would include suitable fit testing and medical evaluation of the user. - Liquid and vapour are flammable. - Moderate fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Moderate explosion hazard when exposed to heat or flame - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: #### Fire/Explosion Hazard carbon dioxide (CO2) aldehydes nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. HAZCHEM 21/1 #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Environmental hazard - contain spillage. - ► Remove all ignition sources - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - ► Control personal contact with the substance, by using protective equipment. - Contain and absorb small quantities with vermiculite or other absorbent material. - ▶ Wipe up. - Collect residues in a flammable waste container. - In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water. - If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks. - ▶ For small spills, reactive diluents should be absorbed with sand. #### Minor Spills - Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. - ▶ Check regularly for spills and leaks. #### for amines: - If possible (i.e., without risk of contact or exposure), stop the leak. - Contain the spilled material by diking, then neutralize. - Next, absorb the neutralized product with clay, sawdust, vermiculite, or other inert absorbent and shovel into containers. - Store the containers outdoors - Brooms and mops should be disposed of, along with any remaining absorbent, in accordance with all applicable federal, state, and local regulations and requirements. - Decontamination of floors and other hard surfaces after the spilled material has been removed may be accomplished by using a 5% solution of acetic acid, followed by very hot water - Dispose of the material in full accordance with all federal, state, and local laws and regulations governing the disposal of chemical wastes. - Waste materials from an amine catalyst spill or leak may be "hazardous wastes" that are regulated under various laws #### **Major Spills** Environmental hazard - contain spillage. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear full body protective clothing with breathing apparatus. - ▶ Prevent, by any means available, spillage from entering drains or water course. - No smoking, naked lights or
ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse vapour. Chemwatch: 5471-19 Page 6 of 21 Issue Date: 28/02/2024 Version No: 3.1 Print Date: 07/10/2024 AutoTech Epoxy Floor Coating Part B - All Colours - Contain or absorb spill with sand, earth or vermiculite. - Use only spark-free shovels and explosion proof equipment. - Collect recoverable product into labelled containers for recycling. - Collect solid residues and seal in labelled drums for disposal. - ▶ Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using - If contamination of drains or waterways occurs, advise emergency services - First remove all ignition sources from the spill area - Have firefighting equipment nearby, and have firefighting personnel fully trained in the proper use of the equipment and in the procedures used in fighting a chemical fire. - Figure 5 Spills and leaks of polyurethane amine catalysts should be contained by diking, if necessary, and cleaned up only by properly trained and equipped personnel. All others should promptly leave the contaminated area and stay upwind. - Protective equipment for cleanup crews should include appropriate respiratory protective devices and impervious clothing, footwear, and - All work areas should be equipped with safety showers and eyewash fountains in good working order. - Any material spilled or splashed onto the skin should be quickly washed off. - Spills or releases may need to be reported to federal, state, and local authorities. This reporting contingency should be a part of a site s emergency response plan. - Protective equipment should be used during emergency situations whenever there is a likelihood of exposure to liquid amines or to excessive concentrations of amine vapor. "Emergency" may be defined as any occurrence, such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment that results in an uncontrolled release of amine liquid or vapor. - Emergency protective equipment should include: Self-contained breathing apparatus, with full face-piece, operated in positive pressure or pressure-demand mode. - Rubber gloves - · Long-sleeve coveralls or impervious full body suit - ▶ Head protection, such as a hood, made of material(s) providing protection against amine catalysts - Firefighting personnel and other on-site Emergency Responders should be fully trained in Chemical Emergency Procedures. However back-up from local authorities should be sought Personal Protective Equipment advice is contained in Section 8 of the SDS #### SECTION 7 Handling and storage #### Precautions for safe handling #### Safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Electrostatic discharge may be generated during pumping this may result in fire. - · Ensure electrical continuity by bonding and grounding (earthing) all equipment - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - Do NOT use compressed air for filling discharging or handling operations. - · Wait 2 minutes after tank filling (for tanks such as those on - road tanker vehicles) before opening hatches or manholes. - Wait 30 minutes after tank filling (for large storage tanks) before opening hatches or manholes. Even with proper - grounding and bonding, this material can still accumulate an - electrostatic charge. If sufficient charge is allowed to - · accumulate, electrostatic discharge and ignition of flammable - air-vapour mixtures can occur. Be aware of handling - operations that may give rise to additional hazards that result - from the accumulation of static charges. These include but are - not limited to pumping (especially turbulent flow), mixing, - · filtering, splash filling, cleaning and filling of tanks and - containers, sampling, switch loading, gauging, vacuum truck operations, and mechanical movements. These activities may - lead to static discharge e.g. spark formation. Restrict line - · velocity during pumping in order to avoid generation of - electrostatic discharge (= 1 m/s until fill pipe submerged to - twice its diameter, then = 7 m/s). Avoid splash filling. - \cdot Do NOT use compressed air for filling, discharging, or handling operations The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example. Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised. - A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date. - Figure 1. The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date. - ▶ Unopened containers received from the supplier should be safe to store for 18 months. - ▶ Opened containers should not be stored for more than 12 months - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of overexposure occurs. Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets - Earth all lines and equipment. Use spark-free tools when handling. - Avoid contact with incompatible materials - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use - Avoid physical damage to containers. - Always wash hands with soap and water after handling. Work clothes should be laundered separately. - Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. Chemwatch: 5471-19 Page 7 of 21 Version No. 3.1 AutoTech Epoxy Floor Coating Part B - All Colours ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions - Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents #### Conditions for safe storage, including any incompatibilities Other information - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Storage incompatibility Suitable container - Avoid strong acids, bases. - Imidazole may be regarded as possessing pyrrole and pyridine like properties and therefore its reactivity might resemble that of the others. In general imidazole, in common with pyrazole, is less reactive than pyrrole and more reactive than
benzene. - One peculiarity of imidazole is the impossibility to distinguish the two nitrogen atoms in solution. The hydrogen moves according to a tautomeric equilibria (that is exactly 50% of each form) from one nitrogen to the other. - In imidazole C4 and C5 are electron rich whilst C2 is electron deficient. Imidazole can behave as both an electrophile and a nucleophile. The nucleophilic reaction leads of N-substituted imidazoles. - imidazole is an amphoteric substance. The acid base behaviour of imidazole is important in determining its reactivity, because it is not just an amphoteric substance, thanks to the pyrrole-like and pyridine-like nitrogen but is also consistently more basic than pyridine (pKa of the conjugated acid 5.3) and more acidic than pyrrole (pKa 17.5). It all depends on the symmetry of the nitrogen atoms, that can equally stabilize either the positive (a proton) or the negative charge. - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. In general, uncured epoxy resins have only poor mechanical, chemical and heat resistance properties. However, good properties are obtained by reacting the linear epoxy resin with suitable curatives to form three-dimensional cross-linked thermoset structures. This process is commonly referred to as curing or gelation process. Curing of epoxy resins is an exothermic reaction and in some cases produces sufficient heat to cause thermal degradation if not controlled. Curing may be achieved by reacting an epoxy with itself (homopolymerisation) or by forming a copolymer with polyfunctional curatives or hardeners. In principle, any molecule containing a reactive hydrogen may react with the epoxide groups of the epoxy resin. Common classes of hardeners for epoxy resins include amines, acids, acid anhydrides, phenols, alcohols and thiols. Relative reactivity (lowest first) is approximately in the order: phenol < anhydride < aromatic amine < cycloaliphatic amine < aliphatic amine < thiol. The epoxy curing reaction may be accelerated by addition of small quantities of accelerators. Tertiary amines, carboxylic acids and alcohols (especially phenols) are effective accelerators. Bisphenol A is a highly effective and widely used accelerator, but is now increasingly replaced due to health concerns with this substance. Epoxy resin may be reacted with itself in the presence of an anionic catalyst (a Lewis base such as tertiary amines or imidazoles) or a cationic catalyst (a Lewis acid such as a boron trifluoride complex) to form a cured network. This process is known as catalytic homopolymerisation. The resulting network contains only ether bridges, and exhibits high thermal and chemical resistance, but is brittle and often requires elevated temperature to effect curing, so finds only niche applications industrially. Epoxy homopolymerisation is often used when there is a requirement for UV curing, since cationic UV catalysts may be employed (e.g. for UV coatings). Secondary amines form salts with strong acids and can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide - ▶ Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air. Amines are incompatible with: - · isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. · strong reducing agents such as hydrides, due to the liberation of flammable gas. Amines possess a characteristic ammonia smell, liquid amines have a distinctive "fishy" smell. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Compounds with a nitrogen atom attached to a carbonyl group, thus having the structure R-CO-NR'R?, are called amides and have different chemical properties from The water solubility of simple amines is enhanced by hydrogen bonding involving these lone electron pairs. Typically salts of ammonium compounds exhibit the following order of solubility in water: primary ammonium (RNH+3) > secondary ammonium (R2NH+2) > tertiary ammonium (R3NH+). Small aliphatic amines display significant solubility in many solvents, whereas those with large substituents are lipophilic. Aromatic amines, such as aniline, have their lone pair electrons conjugated into the benzene ring, thus their tendency to engage in hydrogen bonding is diminished. Their boiling points are high and their solubility in water is low. Like ammonia, amines are bases. Compared to alkali metal hydroxides, amines are weaker - The basicity of amines depends on: - The electronic properties of the substituents (alkyl groups enhance the basicity, aryl groups diminish it). The degree of solvation of the protonated amine, which includes steric hindrance by the groups on nitrogen. Owing to inductive effects, the basicity of an amine might be expected to increase with the number of alkyl groups on the amine. Correlations are complicated owing to the effects of solvation which are opposite the trends for inductive effects. Solvation effects also dominate the basicity of aromatic amines. Solvation significantly affects the basicity of amines. N-H groups strongly interact with water, especially in ammonium ions. Consequently, the basicity of ammonia is enhanced by 10 exp 11 by solvation. Tertiary amines are more basic than secondary amines, which are more basic than primary amines, and finally ammonia is least basic. The order of pKb's (basicities in water) does not follow this order. Similarly aniline is more basic than ammonia in the gas phase, but ten thousand times less so in aqueous solution. Continued... Issue Date: 28/02/2024 Print Date: 07/10/2024 #### AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 In aprotic polar solvents such as DMSO, DMF, and acetonitrile the energy of solvation is not as high as in protic polar solvents like water and methanol. For this reason, the basicity of amines in these aprotic solvents is almost solely governed by the electronic effect - Segregate from alcohol, water. - Avoid contact with copper, aluminium and their alloys. Reactive diluents are stable under recommended storage conditions, but can decompose at elevated temperatures. In some cases, decomposition can cause pressure build-up in closed systems. Glycidyl ethers: - may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals inhibitor should be maintained at adequate levels - may polymerise in contact with heat, organic and inorganic free radical producing initiators - may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines - react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide - attack some forms of plastics, coatings, and rubber - Avoid cross contamination between the two liquid parts of product (kit). - If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and evolution of heat (exotherm) may occur. - This excess heat may generate toxic vapour - Avoid reaction with amines, mercaptans, strong acids and oxidising agents Version No: 3.1 - Must not be stored together - May be stored together with specific preventions - May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. #### SECTION 8 Exposure controls / personal protection #### **Control parameters** #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | | STEL | Peak | Notes | |--|---------------|-----------------------------|--------------------|---------------|---------------------|---------------|---------------| | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 80 ppm / 350 mg/m3 | 3 | 655 mg/m3 / 150 ppm | Not Available | Not Available | | Ingredient | Original IDLH | Original IDLH | | Revised IDLH | | | | | xylene | 900 ppm | | Not | Not Available | | | | | bisphenol A/ bisphenol A
diglycidyl ether polymer | Not Available | | Not | Not Available | | | | | benzyl alcohol | Not Available | | Not | Not Available | | | | | isophorone diamine | Not Available | Not Available | | Not | Not Available | | | | tall oil/ triethylenetetramine polyamides | Not Available | Not Available | | Not Available | | | | | triethylenetetramine | Not Available | Not Available | | Not | Available | | | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating Occupational Exposure Band Limit | | | |--|--|------------------|--| | bisphenol A/ bisphenol A
diglycidyl ether polymer | E | ≤ 0.1 ppm | | | benzyl alcohol | E | ≤ 0.1 ppm | | | isophorone diamine | D | > 0.1 to ≤ 1 ppm | | | tall oil/ triethylenetetramine polyamides | E | ≤ 0.1 ppm | | | triethylenetetramine | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse
health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | #### Exposure controls #### Appropriate engineering controls CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: Chemwatch: 5471-19 Page 9 of 21 Issue Date: 28/02/2024 Version No: 3.1 Print Date: 07/10/2024 #### AutoTech Epoxy Floor Coating Part B - All Colours | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5
m/s
(50-100
f/min.) | |---|---------------------------------------| | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance. Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures. Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus) ## Individual protection protective equipment ## measures, such as personal - Chemical goggles - ▶ Full face shield may be required for supplementary but never for primary protection of eyes. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Eye and face protection #### SPECIAL PRECAUTION: - ▶ Because amines are alkaline materials that can cause rapid and severe tissue damage, wearing of contact lenses while working with amines is strongly discouraged. Wearing such lenses can prolong contact of the eye tissue with the amine, thereby causing more severe damage. - Appropriate eye protection should be worn whenever amines are handled or whenever there is any possibility of direct contact with liquid products, vapors, or aerosol mists. #### CAUTION: - Ordinary safety glasses or face-shields will not prevent eye irritation from high concentrations of vapour. - In operations where positive-pressure, air-supplied breathing apparatus is not required, all persons handling liquid amine catalysts or other polyurethane components in open containers should wear chemical workers safety goggles. - Eyewash fountains should be installed, and kept in good working order, wherever amines are used. #### Skin protection #### See Hand protection below #### Hands/feet protection - ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Chemwatch: 5471-19 Page 10 of 21 Version No: 3.1 #### AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 - Contaminated gloves should be replaced. - As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove
material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons. The performance, based on breakthrough times ,of: - · Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent - Butyl Rubber ranges from excellent to good Nitrile Butyl Rubber (NBR) from excellent to fair. - Neoprene from excellent to fair - Polyvinyl (PVC) from excellent to poor As defined in ASTM F-739-96 - · Excellent breakthrough time > 480 min - Good breakthrough time > 20 min - · Fair breakthrough time < 20 min - Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively) · DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin). DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times For amines: - ▶ Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. - Application of a non-perfumed moisturiser is recommended - Where there is a possibility of exposure to liquid amines skin protection should include: rubber gloves, (neoprene, nitrile, or butyl) - ▶ DO NOT USE latex #### **Body protection** Other protection #### See Other protection below - Overalls. - PVC Apron - PVC protective suit may be required if exposure severe. - Eyewash unit. - Ensure there is ready access to a safety shower - ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computer-generated selection: AutoTech Epoxy Floor Coating Part B - All Colours | Material | СРІ | |-------------------|-----| | VITON | A | | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | TEFLON | С | #### Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter: the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS / Class
1 P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | Air-line* | - | - | | up to 100 x ES | - | AK-3 P2 | - | | 100+ x ES | - | Air-line** | - | - * Continuous-flow; ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Chemwatch: 5471-19 Version No: 3.1 AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used 76ak-p() Where engineering controls are not feasible and work practices do not reduce airborne amine concentrations below recommended exposure limits, appropriate respiratory protection should be used. In such cases, air-purifying respirators equipped with cartridges designed to protect against amines are recommended. #### Ansell Glove Selection | Glove — In order of recommendation | |------------------------------------| | AlphaTec® 15-554 | | AlphaTec® 38-612 | | AlphaTec® Solvex® 37-185 | | AlphaTec® 58-008 | | AlphaTec® 58-530B | | AlphaTec® 58-530W | | AlphaTec® Solvex® 37-675 | | AlphaTec® 79-700 | | AlphaTec® 53-001 | | AlphaTec® 58-005 | The suggested gloves for use should be confirmed with the glove supplier. #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Dark coloured viscous flammable liquid with a chara | cteristic odour; does not mix with wa | ter. | |---|---|--|----------------| | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Characteristic | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point
(°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 27 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not
Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density (g/m3) | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** Chemwatch: 5471-19 Page 12 of 21 Issue Date: 28/02/2024 Version No: 3.1 Print Date: 07/10/2024 #### AutoTech Epoxy Floor Coating Part B - All Colours Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, Inhalation of amine vapours may cause irritation of the mucous membrane of the nose and throat, and lung irritation with respiratory distress and cough. Swelling and inflammation of the respiratory tract is seen in serious cases; with headache, nausea, faintness and anxiety Inhalation of epoxy resin amine hardeners (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting several days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". In animal testing, exposure to aerosols of reactive diluents (especially o-cresol glycidyl ether, CAS RN:2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus and respiratory tract. Inhalation hazard is increased at higher temperatures. Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary oedema. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in Inhaled respiratory depression and may be fatal. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Inhalation of benzyl alcohol may affect breathing (causing depression and paralysis of breathing and lower blood pressure. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury. Amines without benzene rings when swallowed are absorbed throughout the gut. Corrosive action may cause damage throughout the gastrointestinal tract. Animal testing showed that a single dose of bisphenol A diglycidyl ether (BADGE) given by mouth, caused an increase in immature sperm. Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. Ingestion Swallowing large doses of benzyl alcohol may cause abdominal pain, nausea, vomiting and diarrhea. It may affect behaviour and/or the central nervous system, and cause headache, sleepiness, excitement, dizziness, inco-ordination, coma, convulsions and other symptoms of central nervous system depression. In newborns, exposure to excessive amounts of benzyl alcohol has been associated with toxicity (low blood pressure and metabolic acidosis), and an increased incidence of severe jaundice leading to nervous system symptoms called kernicterus. Rarely, death may occur. Benzyl alcohol in medications is present in much smaller amounts than in flush solutions. The amount of benzyl alcohol sufficient to cause toxicity is unknown. If the patient requires more than the recommended dose or other medications containing this preservative, the prescribing doctor must consider the daily metabolic load of benzyl alcohol from these combined sources Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed Skin contact with the material may be harmful; systemic effects may result following absorption. The material can produce chemical burns following direct contact with the skin. Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Volatile amine vapours produce irritation and inflammation of the skin. Direct contact can cause burns. Skin Contact Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause Open cuts, abraded or irritated skin should not be exposed to this material Animal testing showed that a 30% fatty acid amide was a moderate skin irritant. In products intended for prolonged contact with the skin, the concentration of cocoamide DEA should not exceed 5%. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Cationic surfactants cause skin irritation, and, in high concentrations, caustic burns The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. Vapours of volatile amines irritate the eyes, causing excessive secretion of tears, inflammation of the conjunctiva and slight swelling of the cornea, resulting in "halos" around lights. This effect is temporary, lasting only for a few hours. However this condition can reduce the efficiency of undertaking skilled tasks, such as driving a car. Direct eye contact with liquid volatile amines may produce eye damage, permanent for the lighter species Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe damage Eve Animal testing shows that low concentrations of fatty acid amides, such as cocoamide DEA, are severely irritating to the eyes. Eye contact with fatty acid diethanolamides and monoethanolamides may seriously damage the eyes Many cationic surfactants are very irritating to the eyes at low concentration. Concentrated solutions can cause severe burns with permanent clouding. The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational There is some evidence from animal testing that exposure to this material may result in reduced fertility. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Bisphenol A
may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male reproductive organs and sperm. Glycidyl ethers can cause genetic damage and cancer. Chemwatch: **5471-19** Page **13** of **21** Version No: 3.1 #### AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** Imidazole is structurally related, and has been used to counteract the effects of histamine. Imidazoles have been reported to disrupt male fertility, through disruption of the function of the testes. Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions Exposure to some reactive diluents (notably, neopentylglycol diglycidyl ether, CAS RN: 17557-23-2) has caused cancer in some animal testing. Reactions to benzoic acid have been reported. It may worsen asthma, skin rash or skin disease (angio-oedema). Effect may be worse if exposed persons are also taking aspirin tablets. Secondary amines may react with nitrites to form potentially carcinogenic N-nitrosamines. Prolonged or repeated skin contact may cause degreasing, followed by drying, cracking and skin inflammation. Prolonged or repeated exposure to benzyl alcohol may cause allergic contact dermatitis (skin inflammation). Prolonged or repeated swallowing may affect behaviour and the central nervous system with symptoms similar to acute swallowing. It may also affect the liver, kidneys, cardiovascular system, the lungs and cause weight loss. Studies in animals have shown evidence of causing birth defects, but the significance of this information in humans is unknown. Benzyl alcohol has not been shown to cause cancer. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS] | AutoTech Epoxy Floor | TOXICITY | IRRITATION | |--|---|---| | oating Part B - All Colours | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | | Inhalation (Rat) LC50: 5000 ppm4h ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | xylene | Oral (Mouse) LD50; 2119 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit):500 mg/24h moderate | | | | Skin: adverse effect observed (irritating) ^[1] | | | TOXICITY | IRRITATION | | bisphenol A/ bisphenol A
diglycidyl ether polymer | dermal (rat) LD50: >2000 mg/kg ^[2] | Not Available | | algiyolayi etilel polyillel | Oral (Rat) LD50: >2000 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 2000 mg/kg ^[2] | Eye (rabbit): 0.75 mg open SEVERE | | hannal alaah al | Inhalation (Rat) LC50: >4.178 mg/L4h ^[2] | Eye: adverse effect observed (irritating) ^[1] | | benzyl alcohol | Oral (Rat) LD50: 1230 mg/kg ^[2] | Skin (man): 16 mg/48h-mild | | | | Skin (rabbit):10 mg/24h open-mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: adverse effect observed (irreversible damage) ^[1] | | isophorone diamine | Inhalation (Rat) LC50: >=1.07<=5.01 mg/l4h ^[1] | Skin: adverse effect observed (corrosive) ^[1] | | | Oral (Rat) LD50: 1030 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | all oil/ triethylenetetramine
polyamides | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: adverse effect observed (irritating) ^[1] | | p-7 | Oral (Rat) LD50: >2000 mg/kg ^[1] | Skin: adverse effect observed (irritating) $^{[1]}$ | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 805 mg/kg ^[2] | Eye (rabbit):20 mg/24 h - moderate | | | Oral (Rat) LD50: 1591.4 mg/kg ^[1] | Eye (rabbit); 49 mg - SEVERE | | triethylenetetramine | | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit): 490 mg open SEVERE | | | | Skin (rabbit): 5 mg/24 SEVERE | | | | Skin: adverse effect observed (corrosive) ^[1] | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances XYLENE Reproductive effector in rats The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Chemwatch: **5471-19** Page **14** of **21** #### AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** ## BISPHENOL A/ BISPHENOL A DIGLYCIDYL ETHER POLYMER Version No: 3.1 *Hexion MSDS Epikote 1001 No significant acute toxicological data identified in literature search. The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics. Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor. In vitro cell models were used to evaluate the ability of 22 bisphenols (BPs) to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)alpha and/or ERbeta-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERbeta-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERalpha-mediated activity. None of the BPs induced AR-mediated activity. Animal testing over 13 weeks showed bisphenol A diglycidyl ether (BADGE) caused mild to moderate, chronic, inflammation of the skin. Reproductive and Developmental Toxicity: Animal testing showed BADGE given over several months caused reduction in body weight but had no reproductive effects. Cancer-causing potential: It has been concluded that bisphenol A diglycidyl ether cannot be classified with respect to its cancer-causing potential in humans. Genetic toxicity: Laboratory tests on genetic toxicity of BADGE have so far been negative. Immunotoxicity: Animal testing suggests regular injections of diluted BADGE may result in sensitization. Consumer exposure: Comsumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Testing has not found any evidence of hormonal disruption. #### **BENZYL ALCOHOL** Adverse reactions to fragrances in perfumes and fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work. If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Symptoms may include general unwellness, coughing, phlegm, wheezing, chest tightness, headache, shortness of breath with exertion, acute respiratory illness, hayfever, asthma and other respiratory diseases. Perfumes can induce excess reactivity of the airway without producing allergy or airway obstruction. Breathing through a carbon filter mask had no protective effect. Occupational asthma caused by perfume substances, such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms, even though the exposure is
below occupational exposure limits. Prevention of contact sensitization to fragrances is an important objective of public health risk management. Hands: Contact sensitization may be the primary cause of hand eczema or a complication of irritant or atopic hand eczema. However hand eczema is a disease involving many factors, and the clinical significance of fragrance contact allergy in severe, chronic hand eczema may not be clear. Underarm: Skin inflammation of the armpits may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a skin specialist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. Face: An important manifestation of fragrance allergy from the use of cosmetic products is eczema of the face. In men, after-shave products can cause eczema around the beard area and the adjacent part of the neck. Men using wet shaving as opposed to dry have been shown to have an increased risk of allergic to fragrances. Irritant reactions: Some individual fragrance ingredients, such as citral, are known to be irritant. Fragrances may cause a dose-related contact urticaria (hives) which is not allergic; cinnamal, cinnamic alcohol and Myroxylon pereirae are known to cause hives, but others, including menthol, vanillin and benzaldehyde have also been reported. Pigmentary anomalies: Type IV allergy is responsible for "pigmented cosmetic dermatitis", referring to increased pigmentation on the face and neck. Testing showed a number of fragrance ingredients were associated, including jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol and geranium oil. Light reactions: Musk ambrette produced a number of allergic reactions mediated by light and was later banned from use in Europe. Furocoumarins (psoralens) in some plant-derived fragrances have caused phototoxic reactions, with redness. There are now limits for the amount of furocoumarins in fragrances. Phototoxic reactions still occur, but are rare. General/respiratory: Fragrances are volatile, and therefore, in addition to skin exposure, a perfume also exposes the eyes and the nose / airway. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. A significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients and hand eczema. Fragrance allergens act as haptens, low molecular weight chemicals that cause an immune response only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but is transformed into a hapten in the skin (bioactivation), usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or a prohapten, or both. Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Various enzymes play roles in both activating and deactivating prohaptens. Skin-sensitizing prohaptens can be recognized and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or studies of sensitization. QSAR prediction: Prediction of sensitization activity of these substances is complex, especially for those substances that can act both as pre- and prohaptens. CYP1A2 is a member of the cytochrome P450 super family, is one of the best characterized. It is responsible for the metabolism of commonly drugs belonging to classes such as antidepressants, antipsychotics, mood stabilizers, beta blockers and sedative/hypnotics CYP1A2 also metabolises a number of procarcinogens (such as those in cigarettes). Cigarette smoking may lead to three fold increase in 1A2 activity, which explains why smokers require higher doses of beta blockers than than non-smokers Drugs that inhibit CYP1A2 will predictably increase the plasma concentrations of the medications or decrease in clearance of substrates. Drugs such as ciprofloxacin, fluvoxamine, verapamil cimetidine, caffeine and isoniazid are inhibitors of CYP1A2 enzyme. Vegetables such as grape fruit juice, cumic and turmeric are inhibitors of the CYP1A2 enzyme which may leads to increase plasma concentration of psychotropics Inhibition of NF-kB in vivo can be detrimental. NF-kB controls multiple functions in homeostasis including a functional immune response, cell cycle, and cell death. Genetic studies in mice and analysis of naturally occurring mutations in humans point to specific developmental and immune consequences due to altering NF-kB activity. The same functions that make NF-kB attractive for developing inhibitors for treating disease also play a role in homeostasis, and disruption of the NF-kB pathway during development or in adults leads to unfavorable and potentially unhealthy consequences. NF-kB plays a role in multiple homeostatic cellular processes including response to stimuli,cell proliferation, and death, regulating communication between cells, but is also tightly linked with other signaling pathways within the cell, such a p38 and JNK. In addition to mediating proinflammatory responses, NF-kB may regulate apoptotic and cell cycle changes induced by cellular stress, DNA damage or oncogenes by communication with the tumor suppressor p53. Disruption of normal cellular responses by inhibiting NF-kB can have adverse consequences such as immune suppression and tissue damage. Understanding the consequences of lack of NF-kB activity in adult humans comes from observation of naturally occurring genetic deficiencies in this pathway. Mutations have been discovered in humans in signaling molecules upstream of NF-kB resulting in defects in development or immunity. Genetic defects have also been discovered in genes that immediately affect NF-kB activation including IKK Chemwatch: 5471-19 Page 15 of 21 Issue Date: 28/02/2024 Version No: 3.1 #### AutoTech Epoxy Floor Coating Part B - All Colours Print Date: 07/10/2024 gamma (NEMO), a subunit of the IKK complex, and IkBalpha. The IKK gamma mutations result in a defective IKK complex and the IkBalpha mutation results in an IkBalpha protein that cannot be phosphorylated and degraded. Both genetic defects result in suppressed NF-kB activation and ectodermal dysplasia with immunodeficiency. In general patients with these genetic defects have multiple immunological defects including impaired innate immunity, impaired antibody production, and ultimately severe bacterial infections. Understanding the immune defects and susceptibilities in patients with genetic defects in the NF-kB pathway will help prepare for potential adverse effects of pharmacologic NF-kB inhibitors The requirement for NF-kB in the development and maintenance of the immune system is well documented. NF-kB is required for survival during fetal development and for normal lymphocyte generation in adult mice. Removal of the p65 (RelA) subunit of NF-kB or the IKKbeta gene results in death during fetal development primarily due to massive liver apoptosis Fetal liver stem cells from p65 or IKKbeta deficient mice have been transplanted into irradiated hosts revealing a specific requirement of NFkB for T-cells, B-cells, and common lymphoid progenitor development but not for myeloid cells or stem cells. The failure to produce lymphocytes is mediated through hypersensitivity to TNF due to lack of NF-kB activity. Lymphocyte depletion with chemical or genetic inhibition of NF-kB have implications for therapeutic potential use in humans. The double-sided nature of NF-kB inhibition is clear in this instance where chemical inhibition in vivo mimics genetic experiments inducing rapid TNF-dependent apoptosis. Rapid induction of apoptosis may be an advantage for treating some forms of cancer, but at the same time cause depletion of some lymphocyte populati In addition to controlling lymphocyte development, NF-kB plays a major role in both adaptive and innate immunity. Various signaling pathways responding to receptor recognition of immune challenge converge on NF-kB which then regulates genes that control the immune response. Both T-cell receptor and B-cell receptors activate NF-kB through phosphorylation of CARMA1 by PKC theta and PKC beta respectively, resulting in recruitment and activation of IKK and ultimately expression of genes that control cellular activation, proliferation, and survival. In addition, NF-kB plays a role in T-cell response to costimulatory signals. Cells respond to pathogenic microorganisms in part through recognition by Toll-like receptors (TLRs).TLR-family members recognize different molecular structures present in microbes and respond by activating signaling pathways including NF-kB leading to expression of anti-microbial effector molecules, as well as molecules that help in development of the adaptive immune response. Inhibition of NF-kB during TLR stimulation can lead to macrophage apoptosis, a mechanism used by some pathogens to help evade immune response. NF-kB is clearly required for normal mature B-cell and T-cell maintenance and function, including regulatory, memory, and natural killer-like T cells. Inhibition of NF-kB activation in lymphocytes results in defects in growth, survival, and cytokine production and blocks multiple steps in germinal center formation. Given the diverse roles NF-kB plays in immune response to pathogens it is
not surprising to find mice genetically deficient in components of the NF-kB pathway are susceptible to parasitic and bacterial infection. The role of NF-kB in inhibition of apoptosis is one of the factors that make it a potential target for cancer therapy. NF-kB deficient mice die during embryogenesis in part due to TNF-mediated liver damage. Adult mice with impaired NF-kB targeted to the liver have normal liver function, but have severe liver damage after challenge with concanavalin A, a pan-T cell activator. Liver damage occurs due to sustained activation of JNK due to accumulation of reactive oxygen species (ROS) in the absence of normal NF-kB activation. The aryl alkyl alcohol (AAA) fragrance ingredients have diverse chemical structures, with similar metabolic and toxicity profiles. The AAA fragrances demonstrate low acute and subchronic toxicity by skin contact and swallowing. At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal. With the exception of benzyl alcohol, phenethyl and 2-phenoxyethyl AAA alcohols, testing in humans indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low. Testing suggests that at current human exposure levels, this group of chemicals does not cause maternal or developmental toxicity. Animal testing shows no cancer-causing evidence, with little or no genetic toxicity. It has been concluded that these materials would not present a safety concern at current levels of use, as fragrance ingredients. This is a member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS), based partly on their self-limiting properties as flavouring substances in food. In humans and other animals, they are rapidly absorbed, broken down and excreted, with a wide safety margin. They also lack significant potential to cause genetic toxicity and mutations. The intake of benzyl derivatives as natural components of traditional foods is actually higher than the intake as intentionally added flavouring substances Unlike benzylic alcohols, the beta-hydroxyl group of the members of benzyl alkyl alcohols contributes to break down reactions but do not undergo phase II metabolic activation. Though structurally similar to cancer causing ethyl benzene, phenethyl alcohol is only of negligible concern due to limited similarity in their pattern of activity. For benzoates Benzyl alcohol, benzoic acid and its sodium and potassium salt have a common metabolic and excretion pathway. All but benzyl alcohol are considered to be unharmful and of low acute toxicity. They may cause slight irritation by oral, dermal or inhalation exposure except sodium benzoate which doesn't irritate the skin. Studies showed increased mortality, reduced weight gain, liver and kidney effects at higher doses, also, lesions of the brains, thymus and skeletal muscles may occur with benzyl alcohol. However, they do not cause cancer, genetic or reproductive toxicity. Developmental toxicity may occur but only at maternal toxic level. #### ISOPHORONE DIAMINE Isophorone diamine is a strong skin irritant, corrosive with repeated application. Frequent occupational exposure may lead to the development of allergic skin inflammation. There could be damage to the smell organ, throat and lungs following inhalational exposure. Reduced kidney weight can result. No effects on reproduction gene alteration and cancer formation have been observed. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function. #### TALL OIL/ TRIETHYLENETETRAMINE **POLYAMIDES** Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. For imidazoline surfactants (amidoamine/ imidazoline - AAIs) All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ much between these substances. All in vivo skin irritation/corrosion studies performed on AAI substances all indicate them to be corrosive following 4 hour exposure. There do not seem to be big differences in response with the variation on EA length used for the production of the AAI. The available data available for AAI substances indicate that for AAI based on shorter polyethyleneamines (EA), higher toxicity is observed compared to AAI based on longer EA. The forming of imidazoline itself does not seem to play a significant role. For cross-reading in general Fatty acid reaction product with diethylenetriamine (AAI-DETA) therefore represents the worst case. In series of 28-day and combined repeated dose/reproduction screening toxicity studies (OECD 422) AAI-DETA has shown the highest level of toxicity Acute oral exposure of tall oil + triethylenepentamine (TEPA) show limited acute toxicity, with a LD50 above 2000 mg/kg bw. Hence no classification is required. Acute dermal testing with corrosive materials is not justified. As a consequence no classification can be made for acute dermal toxicity. Effects will be characterised by local tissue damage. Systemic uptake via skin is likely to be very limited. The low acute oral toxicity indicate a low systemic toxicity. For dermal exposure no good overall NOAEL can be established as effects are rather characterized by local corrosive effects that are related to duration, quantity and concentration, than by systemic toxicity due to dermal uptake. The mode of action for AAI follows from its structure, consisting of an apolar fatty acid chain and a polar end of a primary amine from the polyethyleneamine. The structure can disrupt the cytoplasmatic membrane, leading to lyses of the cell content and consequently the death of the cell. The AAI are protonated under environmental conditions which causes them to strongly adsorb to organic matter. This leads to a low dermal absorption No classification for acute dermal toxicity is therefore indicated. Also for acute inhalation toxicity information for classification is lacking, and is testing not justified. Due to very low vapour pressure is the likelihood of exposure low. AAI do not contain containing aliphatic, alicyclic and aromatic hydrocarbons and have a relatively high viscosity and so do not indicate an immediate concern for aspiration hazard. Various studies with different AAI indicate that these substances can cause dermal sensitisation. Chemwatch: 5471-19 Page 16 of 21 AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ much between these substances, aspects which determine sensitization. The actual risk of sensitisation is probably low, as AAI are corrosive to skin and consequently exposure will be low due to necessary The likelihood for exposure via inhalation and thus experience respiratory irritation or becoming sensitised to AAI, is very low considering the high boiling point (> 300 deg C) and very low vapour pressure (0.00017 mPa at 25 deg C for diethylenetriamine (DETA) based AAI). In case of high exposure by inhalation, local effects will be more prominent then possible systemic effects considering the low systemic toxicity seen in acute oral toxicity testing However, some calculations can be made for systemic effects following short-term inhalation exposure by extrapolating information from an OECD 422 study on "tall oil reaction products with tetraethylenepentamine showing a NOAEL of 300 mg/kg/day. This would certainly be protective for levels of acute inhalation expected to lead to similar systemic exposure levels. The corrected 8 hr inhalation NOAEC for workers is NOAEL (300 mg/kg) * 1.76 mg/m3 = 529 mg/m3 (assuming no difference in absorption following oral and inhalation exposure). Assessment factors further applied: No interspecies factor is needed due to allometric scaling applied in calculation of corrected NOAEC. Further combined inter-/intra-species for workers AF = 3 (ECETOC concept). As this involves acute exposures, no extrapolation for duration is needed. This results in a DNEL of 529/3 = 176 mg/m3 .A short term/acute exposure at this level can be assumed not to lead to systemic toxicity. Repeat dose toxicity: A combined repeated dose/reproduction screening toxicity study according to OECD 422 with Fatty acid reaction products with tetraethylene-pentamine resulted to a NOAEL of 300 mg/kg bw/day, the highest dose tested. Also available data from the group of Amidoamine/Imidazoline (AAI) substances, including 90-day studies in rat and dogs on a similar substance, indicate very low toxicity.
Consequently, serious toxicity is not observed at levels requiring consideration classification for STOTS-RE Genotoxicity: Tall oil, reaction products with tetraethylenepentamine is not mutagenic in the Salmonella typhimurium reverse mutation assay (based on test with Fatty acids C16-18, C18 unsaturated reaction products with tetraethylenepentamine), is not clastogenic in human lymphocytes, and not mutagenic in the TK mutation test with L5178Y mouse lymphoma cells. It can therefore be concluded that tall oil, reaction products with tetraethylenepentamine not genotoxic. Toxicity to reproduction: The database of relevant studies available for the group of amidoamine/ imidazolines (AAI) include various OECD 422 studies and an OECD 414 study, that all show no concerns regarding reproduction or developmental toxicity. Also all already available data from the group of AAI substances, including a 90-day study in dogs on a similar substance, indicate low toxicity and no adverse effects on reproductive organs. REACh Dossier For quaternary ammonium compounds (QACs): protective measures to limit dermal exposure. Quaternary ammonium compounds are synthetically made surfactants. Studies show that its solubility, toxicity and irritation depend on chain length and bond type while effect on histamine depends on concentration. QACs may cause muscle paralysis with no brain involvement. There is a significant association between the development of asthma symptoms and the use of QACs as disinfectant. Laboratory testing shows that the fatty acid amide, cocoamide DEA, causes occupational allergic contact dermatitis, and that allergy to this substance is becoming more common. Alkanolamides are manufactured by condensation of diethanolamine and the methyl ester of long chain fatty acids. The chemicals in the Fatty Nitrogen Derived (FND) Amides are generally similar in terms of physical and chemical properties, environmental fate and toxicity. Its low acute oral toxicity is well established across all subcategories by the available data and show no apparent organ specific toxicity, mutation, reproductive or developmental defects. ## TRIETHYLENETETRAMINE Version No: 3.1 The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. For alkyl polyamines: The alkyl polyamines cluster consists of two terminal primary and at least one secondary amine groups and are derivatives of low molecular weight ethylenediamine, propylenediamine or hexanediamine. Toxicity depends on route of exposure. Cluster members have been shown to cause skin irritation or sensitisation, eye irritation and genetic defects, but have not been shown to cause cancer. Triethylenetetramine is a severe irritant to skin and eyes and may induce skin sensitisation. Acute exposure to saturated vapour via Intertyleneterramine is a severe irritant to skin and eyes and may induce skin sensitisation. Acute exposure to saturated vapour via inhalation was tolerated without impairment but exposure to aerosol may lead to reversible irritations of the mucous membranes in the airways. Studies done on experimental animals showed that it does not cause cancer or foetal developmental defects. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). ## XYLENE & TRIETHYLENETETRAMINE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. #### XYLENE & BENZYL ALCOHOL & ISOPHORONE DIAMINE The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. # BISPHENOL A/ BISPHENOL A DIGLYCIDYL ETHER POLYMER & BENZYL ALCOHOL & ISOPHORONE DIAMINE & TALL OIL/ TRIETHYLENETETRAMINE POLYAMIDES & TRIETHYLENETETRAMINE The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons #### BISPHENOL A/ BISPHENOL A DIGLYCIDYL ETHER POLYMER & ISOPHORONE DIAMINE & TRIETHYLENETETRAMINE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. #### TALL OIL/ TRIETHYLENETETRAMINE POLYAMIDES & TRIETHYLENETETRAMINE Ethyleneamines are very reactive and can cause chemical burns, skin rashes and asthma-like symptoms. It is readily absorbed through the skin and may cause eye blindness and irreparable damage. As such, they require careful handling. In general, the low-molecular weight polyamines have been positive in the Ames assay (for genetic damage); however, this is probably due to their ability to chelate copper. | Acute Toxicity | ✓ | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ~ | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 #### **SECTION 12 Ecological information** #### Toxicity Version No: 3.1 | AutoTech Epoxy Floor | Endpoint | Test Duration (hr) | Species | Value | Source | |--|------------------|--------------------|--|-------------------|------------------| | Coating Part B - All Colours | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 4.6mg/l | 2 | | xylene | EC50 | 48h | Crustacea | 1.8mg/l | 2 | | | LC50 | 96h | Fish | 2.6mg/l | 2 | | | NOEC(ECx) | 73h | Algae or other aquatic plants | 0.44mg/l | 2 | | higherel A/higherel A | Endpoint | Test Duration (hr) | Species | Value | Source | | bisphenol A/ bisphenol A
diglycidyl ether polymer | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 336h | Fish | 5.1mg/l | 2 | | | LC50 | 96h | Fish | 10mg/l | 2 | | benzyl alcohol | EC50 | 72h | Algae or other aquatic plants | 500mg/l | 2 | | | EC50 | 48h | Crustacea | 230mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 76.828mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | BCF | 1008h | Fish | <0.3 | 7 | | | EC50 | 72h | Algae or other aquatic plants | 37mg/l | 1 | | isophorone diamine | EC50 | 48h | Crustacea | 14.6-
21.5mg/l | 4 | | | LC50 | 96h | Fish | 70mg/l | 1 | | | NOEC(ECx) | 72h | Algae or other aquatic plants | 1.5mg/l | 1 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 4.34mg/l | 2 | | tall oil/ triethylenetetramine polyamides | EC50 | 48h | Crustacea | 7.07mg/l | 2 | | poryamilies | NOEC(ECx) | 72h | Algae or other aquatic plants | 0.5mg/l | 2 | | | LC50 | 96h | Fish | 7.07mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | BCF | 1008h | Fish | <0.5 | 7 | | | EC50 | 72h | Algae or other aquatic plants | 2.5mg/l | 1 | | | EC50 | 48h | Crustacea | 31.1mg/l | 1 | | triethylenetetramine | ErC50 | 72h | Algae or other aquatic plants | 2.5mg/l | 1 | | | LC50 | 96h | Fish | 180mg/l | 1 | | | EC10(ECx) | 72h | Algae or other aquatic plants | 0.67mg/l | 1 | | | EC50 | 96h | Algae or other aquatic plants | 3.7mg/L | 4 | | Legend: | Ecotox databas | | CHA Registered Substances - Ecotoxicological Informa
C Aquatic Hazard Assessment Data 6. NITE (Japan) - E | | | Harmful to aquatic organisms, may cause long-term adverse
effects in the aquatic environment. DO NOT discharge into sewer or waterways. #### Persistence and degradability | | - | | |----------------------|-----------------------------|-----------------------------| | Ingredient | Persistence: Water/Soil | Persistence: Air | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | benzyl alcohol | LOW | LOW | | isophorone diamine | HIGH | HIGH | | triethylenetetramine | LOW | LOW | ## Bioaccumulative potential | Ingredient | Bioaccumulation | |----------------------|--------------------| | xylene | MEDIUM (BCF = 740) | | benzyl alcohol | LOW (LogKOW = 1.1) | | isophorone diamine | LOW (BCF = 3.4) | | triethylenetetramine | LOW (BCF = 5) | Chemwatch: **5471-19** Page **18** of **21** Version No: 3.1 AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 #### Mobility in soil | Ingredient | Mobility | |----------------------|-----------------------| | benzyl alcohol | LOW (Log KOC = 15.66) | | isophorone diamine | LOW (Log KOC = 340.4) | | triethylenetetramine | LOW (Log KOC = 309.9) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. #### Waste Management Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and their formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment. Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed. Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished articles from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws. Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of disposal and recovery is combustion with energy recovery. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010 - ▶ Recycle wherever possible - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 Transport information** #### Labels Required | Marine Pollutant | NO | |------------------|-----| | HA7CHEM | •2W | #### Land transport (ADG) | 14.1. UN number or ID number | 2733 | | |------------------------------------|---|--| | 14.2. UN proper shipping name | AMINES, FLAMMABLE, CORROSIVE, N.O.S. (contains xylene and isophorone diamine) | | | 14.3. Transport hazard class(es) | Class 3 Subsidiary Hazard 8 | | | 14.4. Packing group | III | | | 14.5. Environmental hazard | Not Applicable | | | 14.6. Special precautions for user | Special provisions 223 274 Limited quantity 5 L | | #### Air transport (ICAO-IATA / DGR) | 14.1. UN number | 2733 | | |----------------------------------|---|---| | 14.2. UN proper shipping name | Amines, flammable, corrosive, n.o.s. * (contains xylene and isophorone diamine) | | | 14.3. Transport hazard class(es) | ICAO/IATA Class | 3 | | | ICAO / IATA Subsidiary Hazard | 8 | Chemwatch: **5471-19** Page **19** of **21** Version No: 3.1 AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: **28/02/2024**Print Date: **07/10/2024** | | ERG Code 3C | | | |------------------------------------|---|---------|--| | 14.4. Packing group | III | | | | 14.5. Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | Special provisions | A3 A803 | | | | Cargo Only Packing Instructions | | | | | Cargo Only Maximum Qty / Pack | | | | | Passenger and Cargo Packing Instructions | 354 | | | | Passenger and Cargo Maximum Qty / Pack | 5 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | Y342 | | | | Passenger and Cargo Limited Maximum Qty / Pack | 1 L | | #### Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 2733 | | | |------------------------------------|--------------------|---|--| | 14.2. UN proper shipping name | AMINES, FLAMMABLE | AMINES, FLAMMABLE, CORROSIVE, N.O.S. (contains xylene and isophorone diamine) | | | 14.3. Transport hazard | IMDG Class | 3 | | | class(es) | IMDG Subsidiary Ha | zard 8 | | | 14.4. Packing group | | | | | 14.5 Environmental hazard | Not Applicable | | | | | EMS Number | F-E , S-C | | | 14.6. Special precautions for user | Special provisions | 223 274 | | | | Limited Quantities | 5 L | | | | | | | #### 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--|---------------| | xylene | Not Available | | bisphenol A/ bisphenol A
diglycidyl ether polymer | Not Available | | benzyl alcohol | Not Available | | isophorone diamine | Not Available | | tall oil/ triethylenetetramine polyamides | Not Available | | triethylenetetramine | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--|---------------| | xylene | Not Available | | bisphenol A/ bisphenol A
diglycidyl ether polymer | Not Available | | benzyl alcohol | Not Available | | isophorone diamine | Not Available | | tall oil/ triethylenetetramine polyamides | Not Available | | triethylenetetramine | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### xylene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals $\label{eq:australia} \textbf{Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic #### bisphenol A/ bisphenol A diglycidyl ether polymer is found on the following regulatory lists Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List #### benzyl alcohol is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Chemwatch: 5471-19 Page 20 of 21 #### AutoTech Epoxy Floor Coating Part B - All Colours Issue Date: 28/02/2024 Print Date: 07/10/2024 Australian Inventory of Industrial Chemicals (AIIC) #### isophorone diamine is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) #### tall oil/ triethylenetetramine polyamides is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### triethylenetetramine is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) -
Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) #### **Additional Regulatory Information** Not Applicable Version No: 3.1 ## **National Inventory Status** | National Inventory | Status | | |---|--|--| | Australia - AIIC / Australia Non-
Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (xylene; bisphenol A/ bisphenol A diglycidyl ether polymer; benzyl alcohol; tall oil/ triethylenetetramine polyamides; triethylenetetramine) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | No (bisphenol A/ bisphenol A diglycidyl ether polymer) | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (bisphenol A/ bisphenol A diglycidyl ether polymer) | | | Vietnam - NCI | Yes | | | Russia - FBEPH | No (tall oil/ triethylenetetramine polyamides) | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | ## **SECTION 16 Other information** | Revision Date | 28/02/2024 | |---------------|------------| | Initial Date | 04/06/2021 | ### **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|---| | 2.1 | 04/06/2021 | Hazards identification - Classification, Ecological Information - Environmental, Firefighting measures - Fire Fighter (fire/explosion hazard), Handling and storage - Storage (storage incompatibility) | | 3.1 | 28/02/2024 | Hazards identification - Classification | ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** - PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - IDLH: Immediately Dangerous to Life or Health Concentrations - ES: Exposure Standard - OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - BEI: Biological Exposure IndexDNEL: Derived No-Effect Level Issue Date: 28/02/2024 Chemwatch: 5471-19 Page 21 of 21 Version No: 3.1 ## AutoTech Epoxy Floor Coating Part B - All Colours Print Date: 07/10/2024 - ▶ PNEC: Predicted no-effect concentration - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - IECSC: Inventory of Existing Chemical Substance in China EINECS: European Inventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals - ► PICCS: Philippine Inventory of Chemicals and Chemical Substances - ▶ TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - ► NCI: National Chemical Inventory ► FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. ## **AutoTech Concrete Etch** ## **AutoTech** Chemwatch: 60-4941 Version No: 5.1 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements #### Chemwatch Hazard Alert Code: 3 Issue Date: **23/12/2022** Print Date: **08/10/2024** S.GHS.AUS.EN.E ## SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product name | AutoTech Concrete Etch | |-------------------------------|--------------------------| | Chemical Name | citric acid, monohydrate | | Synonyms | Product Code: 41090500 | | Chemical formula | Not Applicable | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Paint printing , decoration industry. Use according to manufacturer's directions. | |--------------------------|---| |--------------------------|---| ## Details of the manufacturer or supplier of the safety data sheet | Registered company name | Dy-Mark | |-------------------------|--| | Address | 89 Formation Street Wacol QLD 4076 Australia | | Telephone | +61 7 3327 3004 | | Fax | +61 7 3327 3009 | | Website | https://www.dymark.com.au | | Email | info@dymark.com.au | ## Emergency telephone number | Association / Organisation | Dy-Mark | |-----------------------------------|-----------------| | Emergency telephone numbers | +61 7 3327 3099 | | Other emergency telephone numbers | Not Available | ## **SECTION 2 Hazards identification** ## Classification of the substance or mixture ## HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ## Chemwatch Hazard Ratings | | Min | Max | | |---------------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 3 | | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 0 | | 3 = High
4 = Extreme | | Poisons Schedule | Not Applicable | |-------------------------------|--| | Classification ^[1] | Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | #### Label elements Hazard pictogram(s) Signal word Danger Chemwatch: 60-4941 Version No: 5.1 AutoT # Page 2 of 9 AutoTech Concrete Etch Issue Date: 23/12/2022 Print Date: 08/10/2024 #### Hazard statement(s) | H315 | Causes skin irritation. | |------|-----------------------------------| | H318 | Causes serious eye damage. | | H335 | May cause respiratory irritation. | ## Precautionary statement(s) Prevention | P271 | Use only outdoors or in a well-ventilated area. | |------|--| | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P261 | Avoid breathing dust/fumes. | | P264 | Wash all exposed external body areas thoroughly after handling. | ## Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | #### Precautionary statement(s) Storage | P405 | Store locked up. | |-----------|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** ## Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] Name | | | |---------------|---|--|--| | 5949-29-1 | >99.5 <u>citric acid,
monohydrate</u> | | | | Not Available | balance | Ingredients determined not to be hazardous | | | Legend: | nd: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | ## **SECTION 4 First aid measures** ## Description of first aid measures | • | | |--------------|--| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 Firefighting measures** Chemwatch: 60-4941 Page 3 of 9 Issue Date: 23/12/2022 Version No. 5.1 Print Date: 08/10/2024 AutoTech Concrete Etch ## Extinguishing media - There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |----------------------|--| | | | ## Advice for firefighters #### Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. #### Use fire fighting procedures suitable for surrounding area. #### Fire Fighting ▶ DO NOT approach containers suspected to be hot. Alert Fire Brigade and tell them location and nature of hazard. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire - ▶ Equipment should be thoroughly decontaminated after use ## ▶ Solid which exhibits difficult combustion or is difficult to ignite - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. - Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. - A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people - Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. - Dry dust can also be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - All movable parts coming in contact with this material should have a speed of less than 1-metre/sec. Combustion products include carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material May emit poisonous fumes May emit corrosive fumes. HAZCHEM Not Applicable ## **SECTION 6 Accidental release measures** Fire/Explosion Hazard ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. If DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** ## Precautions for safe handling ## Safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. Chemwatch: 60-4941 Version No: 5.1 ## Page 4 of 9 AutoTech Concrete Etch Issue Date: 23/12/2022 Print Date: 08/10/2024 Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - P Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Establish good housekeeping practices. - ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - ▶ Use continuous suction at points of dust generation to capture and
minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - ▶ Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. - ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance. - Do not empty directly into flammable solvents or in the presence of flammable vapors - Fig. 1. The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. • Do NOT cut, drill, grind or weld such containers - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes - Store away from incompatible materials and foodstuff containers - Protect containers against physical damage and check regularly for leaks - Observe manufacturer's storage and handling recommendations contained within this SDS. #### Other information For major quantities: - ▶ Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). - Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities #### Conditions for safe storage, including any incompatibilities #### Suitable container - Polyethylene or polypropylene container. - ▶ Check all containers are clearly labelled and free from leaks - Storage incompatibility - Avoid strong bases - Avoid reaction with oxidising agents - Must not be stored together - May be stored together with specific preventions May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly ## SECTION 8 Exposure controls / personal protection #### **Control parameters** ## Occupational Exposure Limits (OEL) #### INGREDIENT DATA Not Available | Ingredient | Original IDLH | Revised IDLH | |--------------------------|---------------|---------------| | citric acid, monohydrate | Not Available | Not Available | ## Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |--------------------------|--|----------------------------------| | citric acid, monohydrate | E | ≤ 0.01 mg/m³ | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | ### **Exposure controls** ### Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Chemwatch: 60-4941 Page 5 of 9 Issue Date: 23/12/2022 Version No: 5.1 Print Date: 08/10/2024 #### AutoTech Concrete Etch Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |--|------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used #### Individual protection measures, such as personal protective equipment ## Eye and face protection Safety glasses with side shields - Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection See Hand protection below ## Hands/feet protection The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - ·
frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene - nitrile rubber. - butvl rubber. - fluorocaoutchouc Chemwatch: 60-4941 Version No: 5.1 # Page 6 of 9 AutoTech Concrete Etch Issue Date: 23/12/2022 Print Date: 08/10/2024 | | ▶ polyvinyl chloride.
Gloves should be examined for wear and/ or degradation constantly. | |------------------|--| | Body protection | See Other protection below | | Other protection | Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. | #### Respiratory protection Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - · Use approved positive flow mask if significant quantities of dust becomes airborne. - · Try to avoid creating dust conditions. ## **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties **Appearance** White odourless crystalline solid; miscible with water. Physical state Solid Relative density (Water = 1) 1.542 Partition coefficient n-octanol Odour Not Available Not Available / water Auto-ignition temperature Odour threshold Not Available Not Available (°C) Decomposition pH (as supplied) Not Applicable 175 temperature (°C) Melting point / freezing point 100 Viscosity (cSt) Not Applicable (°C) Initial boiling point and 175 Molecular weight (g/mol) Not Applicable boiling range (°C) Flash point (°C) Not Applicable Not Available Taste **Evaporation rate** Not Available **Explosive properties** Not Available Flammability Oxidising properties Not Available Not Applicable Surface Tension (dyn/cm or Upper Explosive Limit (%) Not Applicable Not Applicable mN/m) Lower Explosive Limit (%) Not Applicable Volatile Component (%vol) Not Available Vapour pressure (kPa) Not Available Negligible Gas group Solubility in water Miscible pH as a solution (1%) Not Available Vapour density (Air = 1) Not Available VOC a/L Heat of Combustion (kJ/g) Not Available Ignition Distance (cm) Not Available Not Available Flame Duration (s) Not Available Flame Height (cm) **Enclosed Space Ignition Enclosed Space Ignition** Not Available Not Available Time Equivalent (s/m3) Deflagration Density (g/m3) ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | Chemwatch: 60-4941 Version No: 5.1 **AutoTech Concrete Etch** Page 7 of 9 Issue Date: 23/12/2022 Print Date: 08/10/2024 | Incompatible meterials | See section 7 | |----------------------------------|---------------| | Incompatible materials | See section / | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** | Inhaled | The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. | | | |--------------------------|---|-----------------------------|--| | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Ingestion of low-molecular organic acid solutions may produce spontaneous haemorrhaging, production of blood clots, gastrointestinal damage and narrowing of the oesophagus and stomach entry. | | | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material | | | | Eye | If applied to the eyes, this material causes severe eye damage. Solutions of low-molecular weight organic acids cause pain and injury to the eyes. | | | | Chronic | Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Substance accumulation, in the human
body, may occur and may cause some concern following repeated or long-term occupational exposure. | | | | | TOXICITY | IRRITATION | | | AutoTech Concrete Etch | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | citric acid, monohydrate | Oral (Mouse) LD50; 5790 mg/kg ^[2] | Eye (rabbit): 5 mg/30s mild | | # AutoTech Concrete Etch & CITRIC ACID, MONOHYDRATE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | * | STOT - Single Exposure | * | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | - Data either not available or does not fill the criteria for classification Data available to make classification ## **SECTION 12 Ecological information** ## Toxicity | Dy-Mark Concrete Etch | Endpoint | Test Duration (hr) | Species | Value | Source | |--------------------------|--|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | citric acid, monohydrate | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC10(ECx) | 24h | Algae or other aquatic plants | >1000mg/l | 4 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EP. Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 8. Vendor Data 6. NITE (Japan) - Rioconcentration Data 8. Vendor Data 7. METI | | | | | #### DO NOT discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |--------------------------|-------------------------|------------------| | citric acid, monohydrate | LOW | LOW | Chemwatch: 60-4941 Page 8 of 9 Version No: 5.1 AutoTech Concrete Etch Issue Date: **23/12/2022** Print Date: **08/10/2024** | Ingredient | Bioaccumulation | |--------------------------|----------------------| | citric acid, monohydrate | LOW (LogKOW = -1.64) | | Mobility in soil | | | Ingredient | Mobility | | citric acid, monohydrate | LOW (Log KOC = 10) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. ## **SECTION 14 Transport information** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------------------|---------------| | citric acid, monohydrate | Not Available | ## 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------------------|---------------| | citric acid, monohydrate | Not Available | ## **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture ## citric acid, monohydrate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) ## **Additional Regulatory Information** Not Applicable ## **National Inventory Status** | National Inventory | Status | |---|---| | Australia - AIIC / Australia Non-
Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (citric acid, monohydrate) | | China - IECSC | Yes | | Europe - EINEC / ELINCS /
NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | Version No: 5.1 AutoTech Concrete Etch Issue Date: 23/12/2022 Print Date: 08/10/2024 #### **SECTION 16 Other information** | Revision Date | 23/12/2022 | |---------------|------------| | Initial Date | 13/10/2015 | ### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|--| | 4.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | 5.1 | 23/12/2022 | Classification review due to GHS Revision change. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level - LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - NLP: No-Longer PolymersENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ► TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ► INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. ## **AutoTech Decorative Flakes** ## **AutoTech** Chemwatch: 42-4255 Version No: 9.1 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements ## Chemwatch Hazard
Alert Code: 2 Issue Date: 10/03/2023 Print Date: 07/10/2024 S.GHS.AUS.EN.E ## SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** Product name AutoTech Decorative Flakes **Chemical Name** Not Applicable Synonyms 41090210; 41090209; 41090502; 41090503; Chemical formula Not Applicable Other means of identification Not Available ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Use according to manufacturer's directions. | |--------------------------|---| |--------------------------|---| #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | Dy-Mark | |-------------------------|--| | Address | 89 Formation Street Wacol QLD 4076 Australia | | Telephone | +61 7 3327 3004 | | Fax | +61 7 3327 3009 | | Website | https://www.dymark.com.au | | Email | info@dymark.com.au | ## **Emergency telephone number** | Association / Organisation | Dy-Mark | |-----------------------------------|-----------------| | Emergency telephone numbers | +61 7 3327 3099 | | Other emergency telephone numbers | Not Available | ## **SECTION 2 Hazards identification** ### Classification of the substance or mixture ## HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ## Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | Not Applicable | |-------------------------------|---| | Classification ^[1] | Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Germ Cell Mutagenicity Category 1B, Reproductive Toxicity Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ### Label elements Hazard pictogram(s) Signal word Danger #### Hazard statement(s) Chemwatch: **42-4255** Page **2** of **12** **AutoTech Decorative Flakes** H319 Causes serious eye irritation. H335 May cause respiratory irritation. H340 May cause genetic defects. H361fd Suspected of damaging fertility. Suspected of damaging the unborn child. ## Precautionary statement(s) Prevention Version No: 9.1 | P201 | Obtain special instructions before use. | | | |------|--|--|--| | P271 | Use only outdoors or in a well-ventilated area. | | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | | P261 | Avoid breathing dust/fumes. | | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | ## Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | | |----------------|--|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | ## Precautionary statement(s) Storage | P405 | Store locked up. | |--|------------------| | P403+P233 Store in a well-ventilated place. Keep container tightly closed. | | ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures ### Mixtures | %[weight] | Name | | | | |---|--|--|--|--| | 65-85 | barium sulfate | | | | | 12-22 | vinyl acetate homopolymer | | | | | <15 | potassium tripolyphosphate | | | | | 2-10 | Engineer Chalk | | | | | 1-10 | pigment as | | | | | | titanium dioxide | | | | | 0-1 | carbon black | | | | | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | | | | | 65-85 12-22 <15 2-10 1-10 0-1 1. Classified by Chemwatch; 2. Classification | | | | ## **SECTION 4 First aid measures** ## Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin or hair contact occurs: ▶ Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation. | | Inhalation | If dust is inhaled, remove from contaminated area. Encourage patient to blow nose to ensure clear passage of breathing. If irritation or discomfort persists seek medical attention. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | Issue Date: 10/03/2023 Print Date: 07/10/2024 Chemwatch: 42-4255 Page 3 of 12 Issue Date: 10/03/2023 Version No. 9.1 Print Date: 07/10/2024 #### AutoTech Decorative Flakes #### Indication of any immediate medical attention and special treatment needed for phosphate salts intoxication: - All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred. - Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity. - ▶ Treatment should take into consideration both anionic and cation portion of the molecule - All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored Treat symptomatically - After ingestion of barium acid salts, severe gastro-intestinal irritation followed by muscle twitching, progressive flaccid paralysis and severe hypokalaemia and hypertension, occurs. - Respiratory failure, renal failure and occasional cardiac dysrhythmias may result from an acute ingestion. - Use sodium sulfate as a cathartic. Add 5-10 gm of sodium sulfate to lavage solution or as fluid supplement to Ipecac syrup (the sulfate salt is not absorbed) - Monitor cardiac rhythm and serum potassium closely to establish the trend over the first 24 hours. Large doses of potassium may be needed to correct the hypokalaemia. - Administer generous amounts of fluid replacement but monitor the urine and serum for evidence of renal failure. [Ellenhorn and Barceloux: Medical Toxicology] ## **SECTION 5 Firefighting measures** #### **Extinguishing media** Advice for firefighters - There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture | Fire | Incompatibi | lity | |-------|-------------|------| | 1 110 | mcompanisi | y | Avoid contamination with
oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result - Alert Fire Brigade and tell them location and nature of hazard - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. Fire Fighting - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire - Equipment should be thoroughly decontaminated after use - ▶ Solid which exhibits difficult combustion or is difficult to ignite - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. - Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. - A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. - ▶ Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. #### Fire/Explosion Hazard - Dry dust can also be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - All movable parts coming in contact with this material should have a speed of less than 1-metre/sec. Combustion products include: carbon dioxide (CO2) phosphorus oxides (POx) sulfur oxides (SOx) silicon dioxide (SiO2) other pyrolysis products typical of burning organic material. Decomposes at high temperatures to produce barium oxide. Barium oxide is strongly alkaline and, upon contact with water, is exothermic When barium oxide reacts with oxygen to give a peroxide, there is a fire and explosion risk. May emit poisonous fumes. May emit corrosive fumes HAZCHEM Not Applicable ## **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up - Clean up waste regularly and abnormal spills immediately. - Avoid breathing dust and contact with skin and eyes - Wear protective clothing, gloves, safety glasses and dust respirator. - Use dry clean up procedures and avoid generating dust. #### Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (H-Class HEPA type) (consider explosionproof machines designed to be grounded during storage and use). H-Class HEPA filtered industrial vacuum cleaners should NOT be used on wet materials or surfaces. - Dampen with water to prevent dusting before sweeping. Place in suitable containers for disposal. #### Major Spills Minor Spills #### Moderate hazard. ► CAUTION: Advise personnel in area. Chemwatch: 42-4255 Page 4 of 12 Issue Date: 10/03/2023 Version No. 9.1 Print Date: 07/10/2024 #### **AutoTech Decorative Flakes** ▶ Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - ▶ IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers - for disposal. **IF WET:** Vacuum/shovel up and place in labelled containers for disposal. **ALWAYS:** Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise Emergency Services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame - Establish good housekeeping practices. Safe handling - Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - ▶ Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition - ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance - Do not empty directly into flammable solvents or in the presence of flammable vapors - The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - ▶ Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. ## For major quantities: - ▶ Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams} - Figure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities ## Conditions for safe storage, including any incompatibilities ## Suitable container Other information - Glass container is suitable for laboratory quantities - Polyethylene or polypropylene container. Check all containers are clearly labelled and free from leaks. ## Storage incompatibility Avoid reaction with oxidising agents Avoid reaction with sulfuric acid (H2SO4) Avoid mixing with alkali metals such as sodium, potassium and lithium Must not be stored together - May be stored together with specific preventions May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly Chemwatch: **42-4255** Page **5** of **12** #### AutoTech Decorative Flakes Issue Date: 10/03/2023 Print Date: 07/10/2024 #### **Control parameters** Version No: 9.1 ## Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------|---------------------------------------|--------------|------------------|------------------|--| | Australia Exposure Standards | barium
sulfate | Barium sulphate | 10
mg/m3 | Not
Available |
Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | Engineer
Chalk | Talc, (containing no asbestos fibres) | 2.5
mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure Standards | titanium
dioxide | Titanium dioxide | 10
mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | carbon black | Carbon black | 3 mg/m3 | Not
Available | Not
Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |----------------------------|---------------|---------------| | barium sulfate | Not Available | Not Available | | vinyl acetate homopolymer | Not Available | Not Available | | potassium tripolyphosphate | Not Available | Not Available | | Engineer Chalk | 1,000 mg/m3 | Not Available | | titanium dioxide | 5,000 mg/m3 | Not Available | | carbon black | 1,750 mg/m3 | Not Available | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |----------------------------|--|----------------------------------| | vinyl acetate homopolymer | E | ≤ 0.01 mg/m³ | | potassium tripolyphosphate | E | ≤ 0.01 mg/m³ | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|----------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-
100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-
200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-
500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-
2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Individual protection measures, such as personal protective equipment #### Eye and face protection - ▶ Safety glasses with side shields - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of Chemwatch: 42-4255 Page 6 of 12 Issue Date: 10/03/2023 Version No. 9.1 Print Date: 07/10/2024 #### AutoTech Decorative Flakes lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. Skin protection See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: · frequency and duration of contact, · chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: \cdot Excellent when breakthrough time > 480 min Good when breakthrough time > 20 min Hands/feet protection Fair when breakthrough time < 20 min Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: · Thinner gloves (down
to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. nitrile rubber. butyl rubber. fluorocaoutchouc polyvinyl chloride Gloves should be examined for wear and/ or degradation constantly. See Other protection below **Body protection** Overalls P.V.C apron. ## Other protection - Barrier cream. Skin cleansing cream. - ▶ Eye wash unit ## Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|-------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option) - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - Use approved positive flow mask if significant quantities of dust becomes airborne. - · Try to avoid creating dust conditions. Chemwatch: 42-4255 Page **7** of **12** Issue Date: 10/03/2023 Version No: 9.1 Print Date: 07/10/2024 **AutoTech Decorative Flakes** ## Information on basic physical and chemical properties | Appearance | Coloured flakes. | | | |---|------------------|--|----------------| | Physical state | Solid | Relative density (Water = 1) | 2.745 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Not Available | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density (g/m3) | Not Available | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 Toxicological information** | Information on toxicological e | ffects | |--------------------------------|---| | Inhaled | There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Not normally a hazard due to non-volatile nature of product | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Inorganic polyphosphates are used extensively in domestic and industrial products. Experiments on rats showed kidney damage, growth retardation, and tetany due to low calcium. Ingestion of soluble barium compounds may result in ulceration of the mucous membranes of the gastrointestinal tract, tightness in the muscles of the face and neck, gastroenteritis, vomiting, diarrhoea, muscular tremors and paralysis, anxiety, weakness, laboured breathing, cardiac irregularity due to contractions of smooth striated and cardiac muscles (often violent and painful), slow irregular pulse, hypertension, convulsions and respiratory failure. Sulfates are not well absorbed orally, but can cause diarrhoea. | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material | | Eye | Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. | | Chronic | Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. In long-term animal studies, inorganic polyphosphates produced growth inhibition, increased kidney weights, bone decalcification, enlargement of the parathyroid gland, inorganic phosphate in the urine, focal necrosis of the kidney and alterations of muscle fibre size. Inorganic phosphates have not been shown to cause cancer, genetic damage or reproductive or developmental damage in animal tests. Barium compounds may cause high blood pressure, airway irritation and damage the liver, spleen and bone marrow.
Prolonged exposure may cause a lung inflammation and scarring. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. | Page 8 of 12 Issue Date: 10/03/2023 Version No: 9.1 Print Date: 07/10/2024 AutoTech Decorative Flakes | AutoTech
Decorative Flakes | TOXICITY Net Available | IRRITATION Not Available | | |---|---|--|--| | | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | barium sulfate | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Oral (Mouse) LD50; >3000 mg/kg ^[2] | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | vinyl acetate homopolymer | Oral (Rat) LD50: >25000 mg/kg ^[2] | Not Available | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: >4640 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | potassium tripolyphosphate | Inhalation (Rat) LC50: >0.39 mg/l4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | Oral (Rat) LD50: >2000 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | Engineer Chalk | Inhalation (Rat) LC50: >2.1 mg/l4h ^[1] | Skin (human): 0.3 mg/3d-l mild | | | | Oral (Rat) LD50: >5000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | | | | | | TOXICITY | IRRITATION | | | titanium dioxide | dermal (hamster) LD50: >=10000 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Inhalation (Rat) LC50: >2.28 mg/l4h ^[1] | Skin (human): 0.3 mg /3D (int)-mild * | | | | Oral (Rat) LD50: >=2000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | carbon black | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Oral (Rat) LD50: >2000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | Legend: | Value obtained from Europe ECHA Registered Substat
specified data extracted from RTECS - Register of Toxic I | nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise
Effect of chemical Substances | | | VINYL ACETATE
HOMOPOLYMER | Ames Test (with and without metbolic activaion): negative negative | Genotoxic effects, cells of mammals, in vitro (without metabolic activation): | | | ENGINEER CHALK | The overuse of talc in nursing infants has resulted in respiratory damage causing fluid in the lungs and lung inflammation which may lead to death within hours of inhalation. Long-term exposure can also cause a variety of respiratory symptoms. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | | | | TITANIUM DIOXIDE | * IUCLID Laboratory (in vitro) and animal studies show, exposure to the material may result in a possible risk of irreversible effects, with the possibility of producing mutation. Exposure to titanium dioxide is via inhalation, swallowing or skin contact. When inhaled, it may deposit in lung tissue and lymph nodes causing dysfunction of the lungs and immune system. Absorption by the stomach and intestines depends on the size of the particle. It penetrated only the outermost layer of the skin, suggesting that healthy skin may be an effective barrier. There is no substantive data on genetic damage, though cases have been reported in experimental animals. Studies have differing conclusions on its cancer-causing potential. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | | | | CARBON BLACK | Inhalation (rat) TCLo: 50 mg/m3/6h/90D-I Nil reported | | | | AutoTech Decorative Flakes
& BARIUM SULFATE &
POTASSIUM
TRIPOLYPHOSPHATE &
ENGINEER CHALK &
TITANIUM DIOXIDE &
CARBON BLACK | No significant acute toxicological data identified in literature search. | | | | VINYL ACETATE
HOMOPOLYMER & TITANIUM
DIOXIDE & CARBON BLACK | WARNING: This substance has been classified by the IAI | RC as Group 2B: Possibly Carcinogenic to Humans. | | | POTASSIUM
TRIPOLYPHOSPHATE &
ENGINEER CHALK &
TITANIUM DIOXIDE | Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. | | | ## Page 9 of 12 #### **AutoTech Decorative Flakes** Issue Date: 10/03/2023 Print Date: 07/10/2024 | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ~ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | ✓ | Aspiration Hazard | × | Legend: X - Data either not available or does not fill the criteria for classification - Data available to make classification ## **SECTION 12 Ecological information** #### **Toxicity** | AutoTach | Endpoint | Test Duration (hr) | Species | Value | Source | |-------------------------------|------------------|--------------------|-------------------------------|-----------------------|------------------| | AutoTech
Decorative Flakes | Not
Available | Not Available | Not Available | Not
Available | Not
Availabl | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | >1.15mg/l | 2 | | barium sulfate | EC50 | 48h | Crustacea | 32mg/L | 2 | | | LC50 | 96h | Fish | >3.5mg/l | 2 | | | NOEC(ECx) | 72h | Algae or other aquatic plants | >=1.15mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | vinyl acetate homopolymer | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Sourc | | | EC50 | 48h | Crustacea | >70.7<101.3mg/l | 2 | | otassium tripolyphosphate | EC50(ECx) | 96h | Algae or other aquatic plants | 69.2mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 69.2mg/l | 2 | | Engineer Chalk | Endpoint | Test Duration (hr) | Species | Value | Sourc | | | LC50 | 96h | Fish | 89581.016mg/l | 2 | | | NOEC(ECx) | 720h | Algae or other aquatic plants | 918.089mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 7202.7mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Sourc | | | BCF | 1008h | Fish | <1.1-9.6 | 7 | | | EC50 | 72h | Algae or other aquatic plants | 3.75-
7.58mg/l | 4 | | titanium dioxide | EC50 | 48h | Crustacea | 1.9mg/l | 2 | | | LC50 | 96h | Fish | 1.85-
3.06mg/l | 4 | | | NOEC(ECx) | 672h | Fish | >=0.004mg/L | 2 | | | EC50 | 96h | Algae or other aquatic plants | 179.05mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Sourc | | | EC50 | 72h | Algae or other aquatic plants | >0.2mg/l | 2 | | carbon black | EC50 | 48h | Crustacea | 33.076-
41.968mg/l | 4 | | carbon black | | | | | | | carbon black | LC50 | 96h | Fish | >100mg/l | 2 | (Japan) - Bioconcentration Data 8. Vendor Data
May cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For Inorganic Sulfate: Environmental Fate - Sulfates can produce a laxative effect at concentrations of 1000 - 1200 mg/liter, but no increase in diarrhea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. Atmospheric Fate: Sulfates are removed from the air by both dry and wet deposition processes. Wet deposition processes including rain-out (a process that occurs within the clouds) and washout (removal by precipitation below the clouds) which contribute to the removal of sulfate from the atmosphere. Terrestrial Fate: Soil - In soil, the inorganic sulfates can adsorb to soil particles or leach into surface water and groundwater. Plants - Sodium sulfate is not very toxic to terrestrial plants however; sulfates can be taken up by plants and be incorporated into the parenchyma of the plant. Some plants (e.g. corn and Kochia Scoparia) are capable of accumulating sulfate to concentrations that are potentially toxic to ruminants. Jack pine are the most sensitive plant species. Aquatic Fate: Sulfate in water can also be reduced by sulfate bacteria (Thiobacilli) which use them as a source of energy. In anaerobic environments sulfate is biologically reduced to (hydrogen) sulfide by sulfate reducing bacteria, or incorporated into living organisms as source of sulfur. Sodium sulfate is not reactive in aqueous solution at room temperature. Sodium sulfate will completely dissolve, ionize and distribute across the entire planetary "aquasphere". Some sulfates may eventually be deposited with the majority of sulfates participating in the sulfur cycle in which natural and industrial sodium sulfates are not distinguishable. ## Chemwatch: 42-4255 Page 10 of 12 Issue Date: 10/03/2023 Version No: 9.1 Print Date: 07/10/2024 AutoTech Decorative Flakes Ecotoxicity: Significant bioconcentration or bioaccumulation is not expected. Algae are the most sensitive to sodium sulfate and toxicity occurs in bacteria from 2500mg/L. Sulfates are not acutely toxic to fish or invertebrates. Daphnia magna water fleas and fathead minnow appear to be the least sensitive species. Activated sludge showed a very low sensitivity to sodium sulfate. Overall it can be concluded that sodium sulfate has no acute adverse effect on aquatic and sediment dwelling organisms. No data were found for long term toxicity. For Barium and its Compounds: Environmental Fate: Barium is a highly reactive metal occurring naturally only in a combined state, primarily as inorganic complexes. Conditions such as pH, oxidation-reduction potential, cation exchange capacity, and the presence of sulfate, carbonate, and the presence of metal oxides will affect the partitioning of barium and its compounds in the environment. The element is released to environmental by both natural processes and man-made sources. Most barium released to the environment from industrial sources is in forms that do not become widely dispersed. Atmospheric Fate: In the atmosphere, barium is likely to be present in particulate form. Barium compounds will be removed from the atmosphere via wet/dry deposition. The substance may change to different forms of barium in the air. Terrestrial Fate: Soil - Barium will leach from geological formations to groundwater and will adsorb to soil. Barium is not very mobile in most soil systems and will form soluble complexes with fulvic/humic acids. Transportation rates of barium in soil are dependent on the characteristics of soil material. In soils with high positive ion exchange capacity, (e.g., fine textured mineral soils or soils with high organic matter content), barium mobility will be limited by adsorption. Soils high in calcium carbonate leave barium carbonate residues, which limit mobility. Barium produces barium sulfate residues in the presence of sulfates. Barium is more mobile, and is more likely to be leached, from soils in the presence of chloride and under acidic conditions. Barium binds with fatty acids, (e.g., in acidic landfill leachate), and will be much more mobile in soils containing fatty acids. Plants - Barium is not expected to concentrate in plants, relative to amounts found in soils; however, there are some plants, (beans, forage plants, Brazil nuts, and mushrooms), which accumulate barium Aquatic Fate: Barium will adsorb to sediment/suspended particulate matter. Precipitation of barium sulfate salts is accelerated where rivers enter the ocean. Sedimentation of suspended solids removes a large portion of the barium content from surface waters. Barium in sediments is found largely in the form of barium sulfate, (barite). Ecotoxicity: Barium concentration will increase as it moves up the food chain in both land and aquatic species. In aquatic media, barium is likely to precipitate out of solution as an insoluble salt, (i.e. barium sulfate/barium sulfate/barium sulfate/barium sulfate/barium by fish and marine organisms is also an important removal mechanism. Barium may concentrate in marine plants by a factor of 400-4,000 times the level present in the water. The substance may concentrate in marine animals, plankton, and brown algae. For Phosphate: The principal problems of phosphate contamination of the environment relates to eutrophication processes in lakes and ponds. Phosphorus is an essential plant nutrient and is usually the limiting nutrient for blue-green algae. Aquatic Fate: Lakes overloaded with phosphates is the primary catalyst for the rapid growth of algae in surface waters. Planktonic algae cause turbidity and flotation films. Shore algae cause ugly muddying, films and damage to reeds. Decay of these algae causes oxygen depletion in the deep water and shallow water near the shore. The process is selfperpetuating because an anoxic condition at the sediment/water interface causes the release of more adsorbed phosphates from the sediment. The growth of algae produces undesirable effects on the treatment of water for drinking purposes, on fisheries, and on the use of lakes for recreational purposes. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------|-------------------------|------------------| | vinyl acetate homopolymer | LOW | LOW | | titanium dioxide | HIGH | HIGH | #### Bioaccumulative potential | Ingredient | Bioaccumulation | | |---------------------------|-----------------------|--| | vinyl acetate homopolymer | LOW (LogKOW = 0.7278) | | | titanium dioxide | LOW (BCF = 10) | | ## Mobility in soil | Ingredient | Mobility | | |---------------------------|-----------------------|--| | vinyl acetate homopolymer | LOW (Log KOC = 6.131) | | | titanium dioxide | LOW (Log KOC = 23.74) | | #### SECTION 13 Disposal considerations #### Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible Otherwise ## Product / Packaging disposal - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. - DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. ## **SECTION 14 Transport information** ## **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code Chemwatch: 42-4255 Page 11 of 12 Issue Date: 10/03/2023 Version No. 9.1 Print Date: 07/10/2024 ## **AutoTech Decorative Flakes** | Product name | Group | |----------------------------|---------------| | barium sulfate | Not Available | | vinyl acetate homopolymer | Not Available | | potassium tripolyphosphate | Not Available | | Engineer Chalk | Not Available | | titanium dioxide | Not Available | | carbon black | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |----------------------------|---------------| | barium sulfate | Not Available | | vinyl acetate homopolymer | Not Available | | potassium tripolyphosphate | Not Available | | Engineer Chalk | Not Available | | titanium dioxide | Not Available | | carbon black | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### barium sulfate is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ## vinyl acetate homopolymer is found on the following regulatory lists Australian Inventory of Industrial
Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic ## potassium tripolyphosphate is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### Engineer Chalk is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2A: Probably carcinogenic to humans International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic International Agency fsor Research on Cancer (IARC) - Agents Classified by the IARC Monographs International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ## titanium dioxide is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International Agency fsor Research on Cancer (IARC) - Agents Classified by the IARC Monographs International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### carbon black is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International Agency fsor Research on Cancer (IARC) - Agents Classified by the IARC Monographs International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ## **Additional Regulatory Information** Not Applicable ## National Inventory Status | National Inventory Status | | | | | |---|--|--|--|--| | National Inventory | Status | | | | | Australia - AIIC / Australia Non-
Industrial Use | Yes | | | | | Canada - DSL | Yes | | | | | Canada - NDSL | No (barium sulfate; vinyl acetate homopolymer; potassium tripolyphosphate; Engineer Chalk; carbon black) | | | | | China - IECSC | Yes | | | | | Europe - EINEC / ELINCS /
NLP | No (vinyl acetate homopolymer) | | | | | Japan - ENCS | No (Engineer Chalk) | | | | | Korea - KECI | Yes | | | | | New Zealand - NZIoC | Yes | | | | | Philippines - PICCS | Yes | | | | | USA - TSCA | Yes | | | | | Taiwan - TCSI | Yes | | | | Chemwatch: 42-4255 Page 12 of 12 Issue Date: 10/03/2023 Version No: 9.1 Print Date: 07/10/2024 #### AutoTech Decorative Flakes **National Inventory** Status Mexico - INSQ Yes Vietnam - NCI Yes Russia - FBEPH Yes = All CAS declared ingredients are on the inventory Legend: No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. #### **SECTION 16 Other information** | Revision Date | 10/03/2023 | |---------------|------------| | Initial Date | 05/08/2014 | ## **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 8.1 | 20/08/2021 | Classification change due to full database hazard calculation/update. | | 9.1 | 10/03/2023 | Classification change due to full database hazard calculation/update. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ES: Exposure Standard - OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level - LOAEL: Lowest Observed Adverse Effect Level - ► TLV: Threshold Limit Value - LOD: Limit Of Detection - OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ AllC: Australian Inventory of Industrial Chemicals - DSL: Domestic Substances List - NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - NLP: No-Longer Polymers - ► ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - TSCA: Toxic Substances Control Act - TCSI: Taiwan Chemical Substance Inventory - INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances ## This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.