Zinc Guard Silver Zinc Bulk 4L # Dy-Mark Chemwatch: **7946-23** Version No: **3.1** Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements ### Chemwatch Hazard Alert Code: 2 Issue Date: **28/03/2025** Print Date: **31/03/2025** S.GHS.AUS.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | | |---|--|--| | Product name | Zinc Guard Silver Zinc Bulk 4L | | | Chemical Name | Not Applicable | | | Synonyms | 23230410- Silver Zinc | | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | | Relevant identified uses of the substance or mixture and uses advised against | | | | Relevant identified uses | Use according to manufacturer's directions. | | # Details of the manufacturer or supplier of the safety data sheet | Registered company name | Dy-Mark | | |-------------------------|--|--| | Address | 89 Formation Street Wacol QLD 4076 Australia | | | Telephone | +61 7 3327 3004 | | | Fax | +61 7 3327 3009 | | | Website | https://www.dymark.com.au | | | Email | info@dymark.com.au | | # Emergency telephone number | Association / Organisation | Dy-Mark | |-------------------------------------|-----------------| | Emergency telephone number(s) | +61 7 3327 3099 | | Other emergency telephone number(s) | Not Available | # **SECTION 2 Hazards identification** # Classification of the substance or mixture ### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 2 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low | | Reactivity | 2 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | S6 | |--------------------|---| | Classification [1] | Flammable Liquids Category 3, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 2 | | Legend: | 1. Classified by Chernwatch: 2. Classification drawn from HCIS: 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | # Label elements Hazard pictogram(s) Signal word Warning Page 2 of 15 Chemwatch: 7946-23 Version No: 3.1 Zinc Guard Silver Zinc Bulk 4L Issue Date: 28/03/2025 Print Date: 31/03/2025 ### Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|--| | H312 | Harmful in contact with skin. | | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H332 | Harmful if inhaled. | | H336 | May cause drowsiness or dizziness. | | H402 | Harmful to aquatic life. | | H411 | Toxic to aquatic life with long lasting effects. | ### Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |------|--| | P271 | Use only outdoors or in a well-ventilated area. | | P240 | Ground and bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use non-sparking tools. | | P243 | Take action to prevent static discharges. | | P261 | Avoid breathing mist/vapours/spray. | | P273 | Avoid release to the environment. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P264 | Wash all exposed external body areas thoroughly after handling. | ### Precautionary statement(s) Response | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | |----------------|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P391 | Collect spillage. | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | ### Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | # Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** ### **Substances** See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |---------------|---|---| | 67-64-1 | 15-18 | acetone | | 1330-20-7 | 50-60 | <u>xylene</u> | | 7440-66-6 | 1-5 | zinc powder | | 7779-90-0 | 1-4 | zinc phosphate | | 7429-90-5 | 1-5 | aluminium powder coated | | Not Available | balance | Ingredients determined not to be hazardous | | Legend: | Classified by Chemwatch; 2. Classification drawn from C&L | Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.
EU IOELVs available | # **SECTION 4 First aid measures** # Description of first aid measures **Eye Contact** If this product comes in contact with the eyes: - Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Chemwatch: 7946-23 Page 3 of 15 Issue Date: 28/03/2025 Version No. 3.1 Print Date: 31/03/2025 ### Zinc Guard Silver Zinc Bulk 4L | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. | |--------------|---| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore
emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically. ### **SECTION 5 Firefighting measures** ### Extinguishing media Metal dust fires need to be smothered with sand, inert dry powders. DO NOT USE WATER, CO2 or FOAM - Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire. - Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas. - ▶ Chemical reaction with CO2 may produce flammable and explosive methane. - If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out. - ▶ DO NOT use halogenated fire extinguishing agents. ### Special hazards arising from the substrate or mixture Fire Incompatibility Fire Fighting - Reacts with acids producing flammable / explosive hydrogen (H2) gas - Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - ▶ Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. Combustion products include carbon dioxide (CO2) - DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. - ▶ DO NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present. Metal powders, while generally regarded as non-combustible: - May burn when metal is finely divided and energy input is high. - May react explosively with water. - May be ignited by friction, heat, sparks or flame. May REIGNITE after fire is extinguished. - Will burn with intense heat. ### Note: - Metal dust fires are slow moving but intense and difficult to extinguish. - Containers may explode on heating. - Dusts or fumes may form explosive mixtures with air. - Gases generated in fire may be poisonous, corrosive or irritating. - Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids. - Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids - Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning. carbon monoxide (CO) phosphorus oxides (POx) metal oxides other pyrolysis products typical of burning organic material. **HAZCHEM** ●3Y: ●3YE ### SECTION 6 Accidental release measures Fire/Explosion Hazard Chemwatch: 7946-23 Page 4 of 15 Issue Date: 28/03/2025 Version No. 3.1 Print Date: 31/03/2025 ### Zinc Guard Silver Zinc Bulk 4L Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 | ► Clex
► Avo
Minor Spills ► Cor | nove all ignition sources. an up all spills immediately. id breathing vapours and contact with skin and eyes. itrol personal contact with the substance, by using protective equipment. itain and absorb small quantities with vermiculite or other absorbent material. e up. | |---------------------------------------|---| | ▶ Coll | ect residues in a flammable waste container. | | Aler May West Pres Cor | ar area of personnel and move upwind. It Fire Brigade and tell them location and nature of hazard. It be violently or explosively reactive. It are breathing apparatus plus protective gloves. It are breathing apparatus plus protection place). It are breathing apparatus plus or ignition sources. It are breathing apparatus plus or ignition sources. It are breathing apparatus plus plus plus plus plus plus plus pl | Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 Handling and storage** ### Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - · Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - Do NOT use compressed air for filling discharging or handling operations. - Wait 2 minutes after tank filling (for tanks such as those on - road tanker vehicles) before opening hatches or manholes. · Wait 30 minutes after tank filling (for large storage tanks) - before opening hatches or manholes. Even with proper - · grounding and bonding, this material can still accumulate an - electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable - air-vapour mixtures can occur. Be aware of handling - operations that may give rise to additional hazards that result - · from the accumulation of static charges. These include but are not limited to pumping (especially turbulent flow), mixing, - filtering, splash filling, cleaning and filling of tanks and - containers, sampling, switch loading, gauging, vacuum truck - operations, and mechanical movements. These activities may - lead to static discharge e.g. spark formation. Restrict line - velocity during pumping in order to avoid generation of - electrostatic discharge (= 1 m/s until fill pipe submerged to - twice its diameter, then = 7 m/s). Avoid splash filling. - Do NOT use compressed air for filling, discharging, or handling operations - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets - Earth all lines and equipment. Use spark-free tools when handling. - Avoid contact with incompatible materials - When handling, **DO NOT** eat, drink or smoke - Keep containers securely sealed when not in use - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ### Other information Safe handling - Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. Chemwatch: 7946-23 Page 5 of 15 # Zinc Guard Silver Zinc Bulk 4L Issue Date: 28/03/2025 Print Date: 31/03/2025 - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - ▶ Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - Protect containers against
physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents ### Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. Storage incompatibility Suitable container Avoid reaction with oxidising agents Version No: 3.1 Must not be stored together - May be stored together with specific preventions - May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. ### SECTION 8 Exposure controls / personal protection # **Control parameters** # Occupational Exposure Limits (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-------------------------|-----------------------------------|-------------------------|--------------------------|------------------|------------------| | Australia Exposure Standards | acetone | Acetone | 500 ppm / 1185
mg/m3 | 2375 mg/m3 / 1000
ppm | Not
Available | Not
Available | | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 80 ppm / 350
mg/m3 | 655 mg/m3 / 150
ppm | Not
Available | Not
Available | | Australia Exposure Standards | aluminium powder coated | Aluminium (metal dust) | 10 mg/m3 | Not Available | Not
Available | Not
Available | | Australia Exposure Standards | aluminium powder coated | Aluminium (welding fumes) (as Al) | 5 mg/m3 | Not Available | Not
Available | Not
Available | | Australia Exposure Standards | aluminium powder coated | Aluminium, pyro powders (as AI) | 5 mg/m3 | Not Available | Not
Available | Not
Available | | Ingredient | Original IDLH | Revised IDLH | |-------------------------|---------------|---------------| | acetone | 2,500 ppm | Not Available | | xylene | 900 ppm | Not Available | | zinc powder | Not Available | Not Available | | zinc phosphate | Not Available | Not Available | | aluminium powder coated | Not Available | Not Available | ### Exposure controls #### Appropriate engineering controls CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear Metal dusts must be collected at the source of generation as they are potentially explosive. - Avoid ignition sources. - Good housekeeping practices must be maintained. - Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions. - Do not use compressed air to remove settled materials from floors, beams or equipment - Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. - ▶ Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations. - Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. Chemwatch: 7946-23 Page 6 of 15 Issue Date: 28/03/2025 Version No. 3.1 Print Date: 31/03/2025 #### Zinc Guard Silver Zinc Bulk 4L ▶ Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium. - Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible. - Wet scrubbers are preferable to dry dust collectors. - ▶ Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors. - Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states - Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec - Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Air Speed: welding, brazing fumes (released at relatively low velocity into moderately still air) 0.5-1.0 m/s (100-200 f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Individual protection measures, such as personal protective equipment # Eye and face protection Safety glasses with side shields ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. ### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN
374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - \cdot Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended ### **Body protection** Hands/feet protection See Other protection below Chemwatch: **7946-23**Version No: **3.1** # Zinc Guard Silver Zinc Bulk 4L Issue Date: **28/03/2025**Print Date: **31/03/2025** - Overalls. - ▶ PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Eyewash unit. - Ensure there is ready access to a safety shower. - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. ### Recommended material(s) ### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". Other protection The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Zinc Guard Silver Zinc Bulk 4L | Material | СРІ | |-------------------|-----| | PE/EVAL/PE | Α | | TEFLON | В | | BUTYL | С | | BUTYL/NEOPRENE | С | | CPE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | VITON | С | | VITON/NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ### **Ansell Glove Selection** | Glove — In order of recommendation | |------------------------------------| | AlphaTec® 15-554 | | AlphaTec® 38-612 | | BioClean™ Ultimate BUPS | | AlphaTec® 53-001 | | AlphaTec® 58-005 | | BioClean™ Emerald BENS | | BioClean™ Extra BLAS | | BioClean™ Fusion (Sterile) S-BFAP | | BioClean™ N-Plus BNPS | | MICROFLEX® MidKnight® XTRA 93-862 | The suggested gloves for use should be confirmed with the glove supplier. # SECTION 9 Physical and chemical properties ### Information on basic physical and chemical properties Appearance Bright Silver Flammable Liquid ### Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | AX-AUS | - | AX-PAPR-AUS /
Class 1 | | up to 50 x ES | - | AX-AUS / Class
1 | - | | up to 100 x ES | - | AX-2 | AX-PAPR-2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Chemwatch: **7946-23**Version No: **3.1** # Zinc Guard Silver Zinc Bulk 4L Issue Date: **28/03/2025**Print Date: **31/03/2025** | Physical state | Liquid | Relative density (Water = 1) | 0.95 | |---|----------------|--|----------------| | Odour | Characteristic | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 27 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density (g/m3) | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** # Information on toxicological effects | a) Acute Toxicity b) Skin Irritation/Corosion There is sufficient evidence to classify
this material as skin corrosive or irritating. c) Serious Eye Damage/Irritation d) Respiratory or Skin sensitisation e) Mutagenicity Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. There is sufficient evidence to classify this material as toxic to specific organs through single exposure Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification | - | | |--|------------------------------|--| | c) Serious Eye Damage/Irritation d) Respiratory or Skin sensitisation e) Mutagenicity f) Carcinogenicity g) Reproductivity h) STOT - Single Exposure f) Sared on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. h) STOT - Single Exposure f) STOT - Repeated Exposure Based on available data, the classification criteria are not met. h) STOT - Repeated Exposure Based on available data, the classification criteria are not met. There is sufficient evidence to classify this material as toxic to specific organs through single exposure Based on available data, the classification criteria are not met. There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of all prosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serio | a) Acute Toxicity | There is sufficient evidence to classify this material as acutely toxic. | | There is suncent evidence to classify this material as eye damaging or irritating (a) Respiratory or Skin sensitisation (b) Mutagenicity (c) Garcinogenicity (c) Based on available data, the classification criteria are not met. (c) Based on available data, the classification criteria are not met. (c) Reproductivity (c) Reproductivity (c) Reproductivity (c) Reproductivity (c) Repeated Exposure (c) STOT - Repeated Exposure (c) STOT - Repeated Exposure (c) Aspiration Hazard (c) Respiration (e) | b) Skin Irritation/Corrosion | There is sufficient evidence to classify this material as skin corrosive or irritating. | | e) Mutagenicity Based on available data, the classification criteria are not met. g) Reproductivity Based on available data, the classification criteria are not met. g) Reproductivity h) STOT - Single Exposure j) STOT - Repeated Exposure j) Aspiration Hazard Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of airosocis (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspirat | | There is sufficient evidence to classify this material as eye damaging or irritating | | f) Carcinogenicity g) Reproductivity Based on available data, the classification criteria are not met. h) STOT - Single Exposure There is sufficient evidence to classify this material as toxic
to specific organs through single exposure Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation allation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC | | Based on available data, the classification criteria are not met. | | g) Reproductivity h) STOT - Single Exposure There is sufficient evidence to classify this material as toxic to specific organs through single exposure Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhaleton hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfor | e) Mutagenicity | Based on available data, the classification criteria are not met. | | h) STOT - Single Exposure i) STOT - Repeated Exposure Based on available data, the classification criteria are not met. Based on available data, the classification criteria are not met. There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed. | f) Carcinogenicity | Based on available data, the classification criteria are not met. | | i) STOT - Repeated Exposure j) Aspiration Hazard Based on available data, the classification criteria are not met. There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed. Skin contact | g) Reproductivity | Based on available data, the classification criteria are not met. | | Based on available data, the classification criteria are not met. There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if
swallowed. Skin Contact | h) STOT - Single Exposure | There is sufficient evidence to classify this material as toxic to specific organs through single exposure | | There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed. | i) STOT - Repeated Exposure | Based on available data, the classification criteria are not met. | | Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed. Skin Contact Skin contact with the material may be harmful; systemic effects may result following absorption. | j) Aspiration Hazard | Based on available data, the classification criteria are not met. | | produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed. Skin Contact Skin contact with the material may be harmful; systemic effects may result following absorption. | Inhaled | Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. | | , | Ingestion | produce serious damage to the health of the individual. There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal | | | Skin Contact | | Chemwatch: 7946-23 Page 9 of 15 Version No. 3.1 Zinc Guard Silver Zinc Bulk 4L Issue Date: 28/03/2025 Print Date: 31/03/2025 The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain. Eye The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material. Chronic Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure TOXICITY IRRITATION Zinc Guard Silver Zinc Bulk Not Available Not Available TOXICITY IRRITATION Eye (Human): 186300ppm - Mild Dermal (rabbit) LD50: 20000 mg/kg^[2] Eve (Human): 500ppm Inhalation (Mouse) LC50: 44 mg/L4h^[2] Oral (Rat) LD50: 5800 mg/kg^[2] Eye (Rodent - rabbit): 10uL - Mild Eye (Rodent - rabbit): 20mg - Severe acetone Eye (Rodent - rabbit): 20mg/24H - Moderate Eye: adverse effect observed (irritating)[1] Skin (Rodent - rabbit): 395mg - Mild Skin (Rodent - rabbit): 500mg/24H - Mild Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Eve (Human): 200ppm Dermal (rabbit) LD50: >1700 mg/kg^[2] Inhalation (Rat) LC50: 5000 ppm4h^[2] Eye (Rodent - rabbit): 5mg/24H - Severe Eye (Rodent - rabbit): 87mg - Mild Oral (Mouse) LD50; 2119 mg/kg^[2] xylene Eye: adverse effect observed (irritating)^[1] Skin (Rodent - rabbit): 100% - Moderate Skin (Rodent - rabbit): 500mg/24H - Moderate Skin (Rodent - rat): 60uL/8H - Mild Skin: adverse effect observed (irritating)^[1] IRRITATION TOXICITY Dermal (rabbit) LD50: 1130 mg/kg^[2] Eye: no adverse effect observed (not irritating) $^{[1]}$ zinc powder Skin (Human): 300ug/3D (intermittent) - Mild Oral (Rat) LD50: >2000 mg/kg^[1] Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION zinc phosphate Inhalation (Rat) LC50: >5.7 mg/L4h^[1] Eye: no adverse effect observed (not irritating)^[1] Oral (Rat) LD50: >5000 mg/kg^[2] Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Inhalation (Rat) LC50: >2.3 mg/l4h^[1] Eye: no adverse effect observed (not irritating)[1] aluminium powder coated Oral (Rat) LD50: >2000 mg/kg^[1] Skin: no adverse effect observed (not irritating)^[1] Leaend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register
of Toxic Effect of chemical Substances # Zinc Guard Silver Zinc Bulk Data demonstrate that during inhalation exposure, aromatic hydrocarbons undergo substantial partitioning into adipose tissues. Following cessation of exposure, the level of aromatic hydrocarbons in body fats rapidly declines. Thus, the aromatic hydrocarbons are unlikely to bioaccumulate in the body. Selective partitioning of the aromatic hydrocarbons into the non-adipose tissues is unlikely. No data is available regarding distribution following dermal absorption. However, distribution following this route of exposure is likely to resemble the pattern occurring with inhalation exposure. Aromatics hydrocarbons may undergo several different Phase I dealkylation, hydroxylation and oxidation reactions which may or may not be followed by Phase II conjugation to glycine, sulfation or glucuronidation. However, the major predominant biotransformation pathway is typical of that of the alkylbenzenes and consists of: (1) oxidation of one of the alkyl groups to an alcohol moiety; (2) oxidation of the hydroxyl group to a carboxylic acid; (3) the carboxylic acid is then conjugated with glycine to form a hippuric acid. The minor metabolites can be expected to consist of a complex mixture of isomeric triphenols, the sulfate and glucuronide conjugates of dimethylbenzyl alcohols, Chemwatch: **7946-23** Version No: 3.1 # Zinc Guard Silver Zinc Bulk 4L Issue Date: 28/03/2025 Print Date: 31/03/2025 | | dimethylbenzoic acids and dimethylhippuric acids. Consistent with the low propensity for bioaccumulation of aromatic hydrocarbons, these substances are likely to be significant inducers of their own metabolism. The predominant route of excretion of aromatic hydrocarbons following inhalation exposure involves either exhalation of the unmetabolized parent compound, or urinary excretion of its metabolites. When oral administration occurs, there is little exhalation of unmetabolized these hydrocarbons, presumably due to the first pass effect in the liver. Under these circumstances, urinary excretion of metabolites is the dominant route of excretion. | | | | | |--|--|--------------------------|--|--|--| | ACETONE | For acetone: The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitizer, but it removes fat from the skin, and it also irritates the eye. Animal testing shows acetone may cause anaemia. Studies in humans have shown that exposure to acetone at a level of 2375 mg/m3 does not negatively impact an individual's emotional regulation, behaviour, or learning ability. | | | | | | XYLENE | Reproductive effector in rats | | | | | | ZINC POWDER | Inhalation (human) TCLo: 124 mg/m3/50min. Skin (human):0.3mg/3DaysInt. mild | | | | | | ALUMINIUM POWDER
COATED | No significant acute toxicological data identified in literature search. | | | | | | Zinc Guard Silver Zinc Bulk
4L & XYLENE | The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | | | | | | Zinc Guard Silver Zinc Bulk
4L & ACETONE & XYLENE | The material may cause skin irritation after prolong production of vesicles, scaling and thickening of the | | oduce on contact skin redness, swelling, the | | | | Acute Toxicity | ✓ | Carcinogenicity | × | | | | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ~ | | | | Respiratory or Skin
sensitisation | × | STOT - Repeated Exposure | × | | | | Mutagenicity | × | Aspiration Hazard | × | | | Legend: X − Data either not available or does not fill the criteria for classification ✓ − Data available to make classification # **SECTION 12 Ecological information** # Toxicity | Zina Cuard Cilver Zina Dulla | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------------------|------------------|--------------------|-------------------------------|--|------------------| | Zinc Guard Silver Zinc Bulk
4L | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 6098.4mg/L | 5 | | | EC50 | 72h | Algae or other aquatic plants | 5600-
10000mg/L | 4 | | acetone | LC50 | 96h | Fish | 3744.6-
5000.7mg/L | 4 | | | EC50 | 96h | Algae or other aquatic plants | 9.873-
27.684mg/l | 4 | | | NOEC(ECx) | 12h | Fish | 0.001mg/L | 4 | | xylene | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 1.8mg/l | 2 | | | EC50 | 72h | Algae or other aquatic plants | Algae or other aquatic plants 4.6mg/l | | | | NOEC(ECx) | 73h | Algae or other aquatic plants | Algae or other aquatic plants 0.44mg/l | | | | LC50 | 96h | Fish | Fish 2.6mg/l | | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 0.06-
0.08mg/L | 4 | | | NOEC(ECx) | 672h | Fish | 0.003mg/L | 4 | | zinc powder | EC50 | 72h | Algae or other aquatic plants | 0.005mg/l | 4 | | | EC50 | 96h | Algae or other aquatic plants | 0.042mg/L | 2 | | | LC50 | 96h | Fish | 0.011-
0.014mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 0.105mg/L | 2 | | | EC10(ECx) | 168h | Algae or other aquatic plants | 0.003mg/L | 2 | | zinc phosphate | EC50 | 72h | Algae or other aquatic plants | 0.051mg/L | 2 | | | EC50 | 96h | Algae or other aquatic plants | 0.042mg/L | 2 | | | LC50 | 96h | Fish | 0.09mg/L | 4 | | | | | Outsiles | 14.1 | Caura | | aluminium powder coated | Endpoint | Test Duration (hr) | Species | Value | Source | Chemwatch: 7946-23 Page 11 of 15 Issue Date: 28/03/2025 Version No. 3.1 Print Date: 31/03/2025 #### Zinc Guard Silver Zinc Bulk 4L | | NOEC(ECx) | 72h | Algae or other aquatic plants | >100mg/l | 1 | |---------|-----------------|-----|---|---------------------|---| | | EC50 | 72h | Algae or other aquatic plants | 0.017mg/L | 2 | | | EC50 | 96h | Algae or other aquatic plants | 0.005mg/L | 2 | | | LC50 | 96h | Fish | 0.078-
0.108mg/l | 2 | | Legend: | Ecotox database | | red Substances - Ecotoxicological Information - A
zard Assessment Data 6. NITE (Japan) - Biocond | | | Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters Wastes resulting from use of the product must be disposed of on site or at approved waste sites. When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - ▶ lethal effects on fish by coating gill surfaces, preventing respiration - asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation For Metal: Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms, lonic species may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects. For Aromatic Substances Series: Environmental
Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes . Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For Xylenes: log Koc: 2.05-3.08; Koc: 25.4-204; Half-life (hr) air: 0.24-42; Half-life (hr) H2O surface water: 24-672; Half-life (hr) H2O ground: 336-8640; Half-life (hr) soil: 52-672; Henry's Pa m3 /mol: 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125: BCF: 23; log BCF: 1.17-2.41. Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, mtolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol, 2,6-dimethylphenol, 2,6-dim dimethylphenol. Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. For Ketones: Ketones, unless they are alpha, beta-unsaturated ketones, can be considered as narcosis or baseline toxicity compounds. Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its reactions in air, it seems likely that ketones undergo photolysis in water. Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water. Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify. For Acetone log Kow: -0.24; Half-life (hr) air : 312-1896; Half-life (hr) H2O surface water : 20; Henry's atm m3 /mol : 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07 ThOD: 2.2BCF: 0.69 Environmental Fate: The relatively long half-life allows acetone to be transported long distances from its emission source. Atmospheric Fate: Acetone preferentially locates in the air compartment when released to the environment. In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. Air Quality Standards: none available Terrestrial Fate: Very little acetone is expected to reside in soil, biota, or suspended solids and has low propensity for soil absorption and a high preference for moving through the soil and into the ground water. Acetone released to soil volatilizes although some may leach into the ground where it rapidly biodegrades. Soil Guidelines: none available. Aquatic Fate: A substantial amount of acetone can also be found in water. Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours Drinking Water Standard: none available. Ecotoxicity: Acetone does not concentrate in the food chain, is minimally toxic to aquatic life and is considered to be readily biodegradable. Testing shows that acetone exhibits a low order of toxicity for brook trout, fathead minnow, Japanese quail, ring-neck pheasant and water fleas. Low toxicity for aquatic invertebrates. For aquatic plants, NOEC: 5400-7500 mg/L. Acetone vapours were shown to be relatively toxic to flour beetle and flour moths and their eggs. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality. The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. Mild to moderate toxicity occurred in bacteria exposed to acetone for 6-4 days however, overall data indicates a low degree of toxicity for acetone. The only exception to these findings was the results obtained with the flagellated protozoa (Entosiphon sulcatum). DO NOT discharge into sewer or waterways Chemwatch: **7946-23** Page **12** of **15** Version No: 3.1 # Zinc Guard Silver Zinc Bulk 4L Issue Date: **28/03/2025**Print Date: **31/03/2025** | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-----------------------------|----------------------------------| | acetone | LOW (Half-life = 14 days) | MEDIUM (Half-life = 116.25 days) | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |-------------------------|----------------------| | acetone | LOW (BCF = 0.69) | | xylene | MEDIUM (BCF = 740) | | zinc powder | LOW (LogKOW = -0.47) | | aluminium powder coated | LOW (LogKOW = 0.33) | ### Mobility in soil | Ingredient | Mobility | |------------|------------------------| | acetone | HIGH (Log KOC = 1.981) | ### **SECTION 13 Disposal considerations** ### Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. ### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - Reuse - Recyclina - Disposal (if all else fails) ### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or
pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 Transport information** ### Labels Required ### **Marine Pollutant** HAZCHEM •3Y; •3YE ### Land transport (ADG) | Land transport (ADO) | | | | | |------------------------------------|--|--------------------|--|--| | 14.1. UN number or ID number | 1263 | | | | | 14.2. UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) | | | | | 14.3. Transport hazard class(es) | Class
Subsidiary Hazard | 3 Not Applicable | | | | 14.4. Packing group | III | | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | 14.6. Special precautions for user | Special provisions Limited quantity | 163 223 367
5 L | | | Zinc Guard Silver Zinc Bulk 4L Issue Date: 28/03/2025 Print Date: 31/03/2025 ### Air transport (ICAO-IATA / DGR) | 14.1. UN number | 1263 | | | | |------------------------------------|--|----------------|-------------|--| | 14.2. UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) | | | | | | ICAO/IATA Class | 3 | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subsidiary Hazard | Not Applicable | | | | ciass(es) | ERG Code | 3L | | | | 14.4. Packing group | III | | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A3 A72 A192 | | | | Cargo Only Packing Instructions | | 366 | | | 14.6. Special precautions for user | Cargo Only Maximum Qty / Pack | | 220 L | | | | Passenger and Cargo Packing Instructions | | 355 | | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 10 L | | ### Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1263 | | | |------------------------------------|--|-------------------------------------|--| | 14.2. UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) | | | | 14.3. Transport hazard class(es) | IMDG Class 3 IMDG Subsidiary Hazard Not Applicable | | | | 14.4. Packing group | III | | | | 14.5 Environmental hazard | Marine Pollutant | | | | 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-E , S-E
163 223 367 955
5 L | | ### 14.7. Maritime transport in bulk according to IMO instruments # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------------|---------------| | acetone | Not Available | | xylene | Not Available | | zinc powder | Not Available | | zinc phosphate | Not Available | | aluminium powder coated | Not Available | ### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |-------------------------|---------------| | acetone | Not Available | | xylene | Not Available | | zinc powder | Not Available | | zinc phosphate | Not Available | | aluminium powder coated | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture ### acetone is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$ Australian Inventory of Industrial Chemicals (AIIC) # xylene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 6}$ Australian Inventory of Industrial Chemicals (AIIC) Chemwatch: **7946-23** Page **14** of **15** Version No: 3.1 Zinc Guard Silver Zinc Bulk 4L Print Date: 31/03/2025 International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic ### zinc powder is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ### zinc phosphate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ### aluminium powder coated is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ### **Additional Regulatory Information** Not Applicable ### **National Inventory Status** | National Inventory | Status | | |---|--|--| | Australia - AIIC / Australia Non-
Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (acetone; xylene; zinc powder; aluminium powder coated) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | No (zinc powder; aluminium powder coated) | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | All chemical substances in this product have been designated as TSCA Inventory 'Active' | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (zinc phosphate) | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | # **SECTION 16 Other information** | Revision Date | 28/03/2025 | |---------------|------------| | Initial Date | 25/03/2025 | ### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 3.1 | 28/03/2025 | Physical and chemical properties - Appearance, Composition / information on ingredients - Ingredients | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ES: Exposure Standard - OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ► PNEC: Predicted no-effect concentration - MARPOL: International Convention for the Prevention of Pollution from Ships Issue Date: 28/03/2025 Page **15** of **15** Issue Date: 28/03/2025 Chemwatch: 7946-23 Version No: 3.1 Print Date: 31/03/2025 Zinc Guard Silver Zinc Bulk 4L - ▶ IMSBC: International Maritime Solid Bulk Cargoes Code - IGC: International Gas Carrier Code - ▶ IBC: International Bulk Chemical Code - ▶ AllC: Australian Inventory of Industrial Chemicals - DSL: Domestic Substances List NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous
Chemical and Biological Substances ### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.